Displaying publications 101 - 120 of 227 in total

Abstract:
Sort:
  1. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):1118-21.
    PMID: 20042286 DOI: 10.1016/j.jhazmat.2009.11.134
    Decolorization of reactive azo dye, reactive black 5 (RB5), was conducted using Fe(III) immobilized on Montmorillonite K10 (MK10) as a catalyst in the presence of H(2)O(2) using Fenton-like oxidation process. The effect of different parameters such as iron ions loading on supported catalyst, catalyst dosage, initial pH of dye solution, initial concentration of H(2)O(2) and dye and reaction temperature on the decolorization efficiency of the process were studied. The results indicated that by using 12 mM of H(2)O(2) and 3.50 g L(-1) of the 0.11 wt.% Fe(III) oxide on MK10 catalyst at pH of 2.5, 99% of decolorization efficiency was achieved within 150 min in a batch process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Wong YS, Kadir MO, Teng TT
    Bioresour Technol, 2009 Nov;100(21):4969-75.
    PMID: 19560338 DOI: 10.1016/j.biortech.2009.04.074
    Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  3. Mohd Din AT, Hameed BH, Ahmad AL
    J Hazard Mater, 2009 Jan 30;161(2-3):1522-9.
    PMID: 18562090 DOI: 10.1016/j.jhazmat.2008.05.009
    The liquid-phase adsorption of phenol onto coconut shell-based activated carbon, CS850A was investigated for its equilibrium studies and kinetic modeling. Coconut shell was converted into high quality activated carbon through physiochemical activation at 850 degrees C under the influence of CO(2) flow. Beforehand, the coconut shell was carbonized at 700 degrees C and the resulted char was impregnated with KOH at 1:1 weight ratio. In order to evaluate the performance of CS850A, a series of batch adsorption experiments were conducted with initial phenol concentrations ranging from 100 to 500 mg l(-1), adsorbent loading of 0.2g and the adsorption process was maintained at 30+/-1 degrees C. The adsorption isotherms were in conformation to both Langmuir and Freundlich isotherm models. Chemical reaction was found to be a rate-controlling parameter to this phenol-CS850A batch adsorption system due to strong agreement with the pseudo-second-order kinetic model. Adsorption capacity for CS850A was found to be 205.8 mg g(-1).
    Matched MeSH terms: Waste Disposal, Fluid/methods
  4. Suja F, Donnelly T
    Water Sci Technol, 2008;58(5):977-83.
    PMID: 18824794 DOI: 10.2166/wst.2008.454
    A comparative study to explore the characteristics of partially and fully packed biological aerated filters (BAFs) in the removal of carbon pollutant, reveals that the partial-bed reactor can perform comparably well with the full-bed reactor. The organic removal rate was 5.34 kg COD m(-3) d(-1) at Organic Loading Rates (OLR) 5.80+/-0.31 kg COD m(-3) d(-1) for the full-bed, and 5.22 kg COD m(-3) d(-1) at OLR 5.79+/-0.29 kg COD m(-3) d(-1) for the partial-bed. In the partial-bed system, where the masses of biomass were only 41-51% of those of the full-bed, the maximum carbon removal limit was still between 5 to 6 kg COD m(-3) d(-1). At organic loadings above 5.0 kg COD m(-3) d(-1), the carbon removal capacity in both systems was limited by the mass and activity of microorganisms. The SRT in the full and partial-bed reactors was primarily controlled by the biomass loss in the effluent and during backwash operation. The SRT was reduced from 20.08 days at OLR 4.18+/-0.20 kg COD m(-3) d(-1) to 7.62 days at OLR 5.80+/-0.31 kg COD m(-3) d(-1) in the full-bed, and from 7.17 days to 4.21 days in the partial-bed. After all, SRT values in the partial-bed were always lower than those in the full-bed.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Sep 15;157(2-3):344-51.
    PMID: 18280648 DOI: 10.1016/j.jhazmat.2007.12.105
    In this work, the adsorption of malachite green (MG) was studied on activated carbon prepared from bamboo by chemical activation with K(2)CO(3) and physical activation with CO(2) (BAC). Adsorption studies were conducted in the range of 25-300 mg/L initial MG concentration and at temperature of 30 degrees C. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 263.58 mg/g. The rates of adsorption were found to confirm to pseudo-second-order kinetics with good correlation and the overall rate of dye uptake was found to be controlled by pore diffusion throughout the entire adsorption period. The results indicate that the BAC could be used to effectively adsorb MG from aqueous solutions.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  6. Hameed BH, Ahmad AA
    J Hazard Mater, 2009 May 30;164(2-3):870-5.
    PMID: 18838221 DOI: 10.1016/j.jhazmat.2008.08.084
    The potential of garlic peel (GP), agricultural waste, to remove methylene blue (MB) from aqueous solution was evaluated in a batch process. Experiments were carried out as function of contact time, initial concentration (25-200mg/L), pH (4-12) and temperature (303, 313 and 323 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The data fitted well with the Freundlich isotherm. The maximum monolayer adsorption capacities were found to be 82.64, 123.45, and 142.86 mg/g at 303, 313, and 323 K, respectively. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the garlic peel could be an alternative for more costly adsorbents used for dye removal.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):337-46.
    PMID: 18035483
    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  9. Idris A, Ahmed I, Jye HW
    Water Sci Technol, 2007;56(8):169-77.
    PMID: 17978445
    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  10. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  11. Alam MZ, Muyibi SA, Jamal P
    PMID: 17849310
    Biological treatment of sewage treatment plant (STP) sludge by potential pure bacterial culture (Bacillus sp.) with optimum process conditions for effective biodegradation and bioseparation was carried out in the laboratory. The effective and efficient bioconversion was evaluated with the treatment of pure bacterial culture and existing microbes (uninnoculated) in sludge. The optimum process conditions i.e., temperature, 40 degrees C; pH, 6; inoculum, 5% (v/v); aeration, 1 vvm; agitation speed, 50 rpm obtained from the previous studies with chemical oxygen demand COD at 30 mgL(-1) were applied for the biological treatment of sludge. The results indicated that pure bacterial culture (Bacillus sp.) showed higher degradation and separation of treated sludge compared to treatment with the existing mixed microbes in a stirred tank bioreactor. The treated STP sludge by potential pure bacterial culture and existing microbes gave 30% and 11%; 91.2% and 59.1; 88.5% and 52.3%; 98.4% and 51.3%; 96.1% and 75.2%; 99.4% and 72.8% reduction of total suspended solids (TSS, biosolids), COD, soluble protein, turbidity, total dissolved solids (TDS) and specific resistance to filtration (SRF), respectively within 7 days of treatment. The pH was observed at 6.5 and 4 during the treatment of sludge by pure culture and existing microbes, respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  13. Alam MZ, Muyibi SA, Mansor MF, Wahid R
    J Environ Sci (China), 2006;18(3):446-52.
    PMID: 17294638
    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800 degrees C, and physical activation at 15 degrees C (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800 degrees C showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Jun 15;154(1-3):639-48.
    PMID: 18063301
    In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  16. Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):204-12.
    PMID: 18023971
    In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 May 1;153(1-2):701-8.
    PMID: 17942219
    In this work, the potential feasibility of rice straw-derived char (RSC) for removal of C.I. Basic Green 4 (malachite green (MG)), a cationic dye from aqueous solution was investigated. The isotherm parameters were estimated by non-linear regression analysis. The equilibrium process was described well by the Langmuir isotherm model. The maximum RSC sorption capacity was found to be 148.74 mg/L at 30 degrees C. The kinetics of MG sorption on RSC followed the Lagergren's pseudo-first-order model and the overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, while intraparticle diffusion controlled the overall rate of adsorption at a later stage. The results indicated that RSC was an attractive adsorbent for removing basic dye from aqueous solutions.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Ahmad AA, Hameed BH, Aziz N
    J Hazard Mater, 2007 Mar 6;141(1):70-6.
    PMID: 16887263
    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  19. Chan CH, Lim PE
    Bioresour Technol, 2007 May;98(7):1333-8.
    PMID: 16822665
    Performance of the sequencing batch reactor (SBR) treating synthetic phenolic wastewater at influent phenol concentrations from 100 to 1000 mg/L was evaluated. Two identical SBRs were built and operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 4:6:1:1 for a cycle time of 12h. One of the reactors was operated with aerated FILL (R1) and the other with unaerated FILL (R2). The treated effluent quality and the rate of degradation during REACT were the criteria for evaluating performance of the two reactors. The results showed that the FILL mode had no significant influence on the treatment efficiency of phenol and COD for the entire range of influent phenol concentrations investigated. However, reactor R1 required a relatively shorter REACT time for phenol removal as compared to R2. This meant that R1 had the advantage of providing treatment at a higher organic loading rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Isa MH, Asaari FA, Ramli NA, Ahmad S, Siew TS
    Waste Manag Res, 2005 Dec;23(6):565-70.
    PMID: 16379126
    The implementation of a suitable solid waste management programme with appropriate methods of recycling as an inherent element is vital to the alleviation of the problems associated with solid waste generation, handling and disposal, environmental conservation, public hygiene, etc. The present work is a case study on solid waste collection and recycling practices in Nibong Tebal town, Penang, Malaysia. The amount and types of domestic waste generated, household participation in recycling, identification of existing problems related to the implementation of the recycling programme, etc. formed the basis of this study. Surveys (interviews/questionnaires) and on-site observations were conducted to gather information on the solid waste collection and recycling practice of the residents. A focus group of 60 individuals was selected and their response to a questionnaire, prepared according to a Likert scale, was obtained and analysed. The majority of the respondents expressed concerns about recycling and wanted more to be done in this regard. Illegal collection, aesthetically displeasing sites and a lack of public awareness were problems of major concern. Issues related to inadequate funding and manpower as well as end market are also addressed and suggestions made.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links