This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods
Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Pollution/analysis*
In this study, nano-sized ITO supported Pt-Pd bimetallic catalyst was synthesized for the degradation of methyl parathion pesticide, a common extremely toxic contaminant in aqueous solution. On the characterization with different techniques, a beautiful scenario of honeycomb architecture composed of ultra-small nanoneedles or fine hairs was found. Average size of nanocatalyst also confirmed which was in the range of 3-5 nm. High percent degradation (94%) was obtained in 30 s using 1.5 × 10- 1 mg of synthesized nanocatalyst, 0.5 mM NaBH4, and 110 W microwave radiations power. Recyclability of nanocatalyst was efficient till 4th cycle observed during study of reusability. The supported Pt-Pd bimetallic nanocatalyst on ITO displayed many advantages over conventional methods for degradation of methyl parathion pesticide, such as high percent degradation, short reaction time, small amount of nanocatalyst, and multitime reusability. Graphical abstract Schematic illustration of reaction for degradation of methyl parathion.
Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*
A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*
The objective of the study is to examine the impact of natural disasters on external migration, price level, poverty incidence, health expenditures, energy and environmental resources, water demand, financial development, and economic growth in a panel of selected Asian countries for a period of 2005-2017. The results confirm that natural disasters in the form of storm and flood largely increase migration, price level, and poverty incidence, which negatively influenced country's economic resources, including enlarge healthcare expenditures, high energy demand, and low economic growth. The study further presented the following results: i) natural resource depletion increases external migration, ii) FDI inflows increase price level, iii) increase healthcare spending and energy demand decreases poverty headcount, iv) poverty incidence and mortality rate negatively influenced healthcare expenditures, v) industrialization increases energy demand, and vi) agriculture value added, fertilizer, and cereal yields required more water supply to produce greater yield. The study emphasized the need to magnify the intensity of natural disasters and create natural disaster mitigation unit to access the human and infrastructure cost and attempt quick recovery for global prosperity.
Matched MeSH terms: Water Supply/economics; Water Resources/supply & distribution*
Evaporation is a crucial component to be established in agriculture management and water engineering. Evaporation prediction is thus an essential issue for modeling researchers. In this study, the multilayer perceptron (MLP) was used for predicting daily evaporation. MLP model is as one of the famous ANN models with multilayers for predicting different target variables. A new strategy was used to enhance the accuracy of the MLP model. Three multi-objective algorithms, namely, the multi-objective salp swarm algorithm (MOSSA), the multi-objective crow algorithm (MOCA), and the multi-objective particle swarm optimization (MOPSO), were respectively and separately coupled to the MLP model for determining the model parameters, the best input combination, and the best activation function. In this study, three stations in Malaysia, namely, the Muadzam Shah (MS), the Kuala Terengganu (KT), and the Kuantan (KU), were selected for the prediction of the respective daily evaporation. The spacing (SP) and maximum spread (MS) indices were used to evaluate the quality of generated Pareto front (PF) by the algorithms. The lower SP and higher MS showed better PF for the models. It was observed that the MOSSA had higher MS and lower SP than the other algorithms, at all stations. The root means square error (RMSE), mean absolute error (MAE), percent bias (PBIAS), and Nash Sutcliffe efficiency (NSE) quantifiers were used to compare the ability of the models with each other. The MLP-MOSSA had reduced RMSE compared to the MLP-MOCA, MLP-MOPSO, and MLP models by 18%, 25%, and 35%, respectively, at the MS station. The MAE of the MLP-MOSSA was 2.7%, 4.1%, and 26%, respectively lower than those of the MLP-MOCA, MLP-MOPSO, and MLP models at the KU station. The MLP-MOSSA showed lower MAE than the MLP-MOCA, MLP-MOPSO, and MLP models by 16%, 18%, and 19%, respectively, at the KT station. An uncertainty analysis was performed based on the input and parameter uncertainty. The results indicated that the MLP-MOSSA had the lowest uncertainty among the models. Also, the input uncertainty was lower than the parameter uncertainty. The general results indicated that the MLP-MOSSA had the high efficiency for predicting evaporation.
Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
Zinc (Zn) was identified as one of the most toxic heavy metals and often found contaminating the water sources as a result of inefficient treatment of industrial effluent. A green emulsion liquid membrane (GELM) was proposed in this study as a method to minimize the concentration of Zn ions in an aqueous solution. Instead of the common petroleum-based diluent, the emulsion is reformulated with untreated waste cooking oil (WCO) collected from the food industry as a sustainable and cheaper diluent. It also includes Bis(2-ethylhexyl) phosphate (D2EHPA) as a carrier, Span 80 as a surfactant, sulfuric acid (H2SO4) as an internal phase, and ZnSO4 solution as an external phase. Such formulation requires a thorough understanding of the oil characteristics as well as the interaction of the components in the membrane phase. The compatibility of WCO and D2EHPA, as well as the external phase pH, was confirmed via a liquid-liquid extraction (LLE) method. To obtain the best operating conditions for Zn extraction using GELM, the extraction time and speed, carrier, surfactant and internal phase concentrations, and W/O ratio were varied. 95.17% of Zn ions were removed under the following conditions; 0.001 M of H2SO4 in external phase, 700 rpm extraction speed for 10 min, 8 wt% of carrier and 4 wt% of surfactant concentrations, 1:4 of W/O ratio, and 1 M of internal phase concentration.
The study examines the influence of temperature and pH on the leaching of six heavy metals (HMs) species: aluminum (Al), zinc (Zn), chromium (Cr), copper (Cu), lead (Pb) and arsenic (As) from transparent polyethylene pellets into seawater. The idea is to understand the potential influence of intensifying global warming and ocean acidification towards microplastic toxicity in the ocean. HMs leaching was obvious by 24th hours, with most HMs concentration decreased in water by 120th and 240th hours except Al. Nevertheless, we report that temperature and pH do not influence the overall HMs leaching from PE pellets with statistical analysis showing no significance (p waters showed the greatest extent of weathering. This study highlights that PE pellets exposed under tropical conditions may accelerate surficial degradation and possibly stimulate HMs adherence to the polymer as a pollution vector. Further consideration of metal behaviour in water and microbial activities is crucial to improve our understanding of microplastic toxicity under tropical weathering.
Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
Separation materials have received increasing attention given their broad applications in the management of environmental pollution. It is desired to balance the contradiction between high separation efficiency and selectivity of separation materials. The integration of ball-milled bone chars with electrospun membranes might achieve this balance. In this study, electrospun cellulose/chitosan/ball-milled bone char (CL/CS/MB) membranes were by well-dispersing ball-milled bone chars with nanoscale size (98.9-167.5 nm) and developed porosity (40.2-373.1 m2/g) in the electrospinning solvent. The synergistic integration of distributed MBs (5.4-31.5 wt.% of loading hydroxyapatite on the membrane matrix) allowed the efficient sorption of Pb(II) with fast kinetics (20.0 min), excellent capacity (219.9 mg/g at pH 5.0, T 298 K), and favorable selectivity coefficients (2.76-6.79). The formation of minerals was dominant for the selective sorption of Pb(II) by combining the spectral analysis and quantitative determination. The surface complexation with O-/reductive N-species, the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination with the aromatic carbon via the π-electrons should be not ignored for the capture of Pb(II). This work demonstrated the feasibility of electrospun CL/CS/MB membranes as a promising candidate for the remediation of aquatic pollutants.
DCOIT is an effective antifouling biocide, which presence in the environment and toxicity towards non-target species has been generating great concern. This study evaluated the waterborne toxicity of DCOIT on marine invertebrates (i.e., survival of brine shrimp Artemia sp., larval development of the sea urchin Echinometra lucunter and the mussel Perna perna), as well as DCOIT-spiked-sediment toxicity on the fecundity rate of the copepod Nitrocra sp. And the mortality of the amphipod Tiburonella viscana. The data outcomes were used to calculate environmental hazards and risks, which were compared to their corresponding values obtained from temperate regions. Waterborne toxicity can be summarized as follows: Artemia sp. (LC50-48h = 163 (135-169) μg/L), E. lucunter (EC50-36h = 33.9 (17-65) μg/L), and P. perna (EC50-48h = 8.3 (7-9) μg/L). For whole-sediment toxicity, metrics were calculated for T. viscana (LC50-10d = 0.5 (0.1-2.6) μg/g) and Nitrocra sp, (EC50-10d = 200 (10-480) μg/kg). The DCOIT hazard was assessed for both tropical and non-tropical pelagic organisms. The predicted no-effect concentration (PNEC) for tropical species (0.19 μg/L) was 1.7-fold lower than that for non-tropical organisms (0.34 μg/L). In whole-sediment exposures, DCOIT presented a PNEC of 0.97 μg/kg, and the risk quotients (RQs) were >1 for areas with constant input of DCOIT such as ports ship/boatyards, marinas, and maritime traffic zones of Korea, Japan, Spain, Malaysia, Indonesia, Vietnam, and Brazil. The presented data are important for supporting the establishment of policies and regulations for booster biocides worldwide.
The reactive power control of a power system is discussed under two types of variables: continuous variables (e.g., generator bus voltages) and discrete variables (e.g., transformer taps and the size of switched shunt capacitors). This paper proposes a novel and powerful algorithm, named turbulent flow of water-based optimization (TFWO) as well as a new improved version of this algorithm, called θ-TFWO, for optimal reactive power distribution (ORPD) to reduce losses. The proposed method is applied to two large-scale IEEE 57-bus systems. Furthermore, to demonstrate the competitive performance of the suggested algorithm, its performance was compared to that of several other algorithms, including biogeography-based optimization (BBO), social spider algorithm (SSA), and optics inspired optimization (OIO), in terms of solving the ORPD problem. The results confirmed the robustness and effectiveness of the proposed method as a powerful optimizer applicable to optimal reactive power distribution in power systems.
Radon (222Rn), an inert gas, is considered a silent killer due to its carcinogenic characteristics. Dhaka city is situated on the banks of the Buriganga River, which is regarded as the lifeline of Dhaka city because it serves as a significant source of the city's water supply for domestic and industrial purposes. Thirty water samples (10 tap water from Dhaka city and 20 surface samples from the Buriganga River) were collected and analyzed using a RAD H2O accessory for 222Rn concentration. The average 222Rn concentration in tap and river water was 1.54 ± 0.38 Bq/L and 0.68 ± 0.29 Bq/L, respectively. All the values were found below the maximum contamination limit (MCL) of 11.1 Bq/L set by the USEPA, the WHO-recommended safe limit of 100 Bq/L, and the UNSCEAR suggested range of 4-40 Bq/L. The mean values of the total annual effective doses due to inhalation and ingestion were calculated to be 9.77 μSv/y and 4.29 μSv/y for tap water and river water, respectively. Although all these values were well below the permissible limit of 100 μSv/y proposed by WHO, they cannot be neglected because of the hazardous nature of 222Rn, especially considering their entry to the human body via inhalation and ingestion pathways. The obtained data may serve as a reference for future 222Rn-related works.
Microbial fuel cells (MFCs) seem to have emerged in recent years to degrade the organic pollutants from wastewater. The current research also focused on phenol biodegradation using MFCs. According to the US Environmental Protection Agency (EPA), phenol is a priority pollutant to remediate due to its potential adverse effects on human health. At the same time, the present study focused on the weakness of MFCs, which is the low generation of electrons due to the organic substrate. The present study used rotten rice as an organic substrate to empower the MFC's functional capacity to degrade the phenol while simultaneously generating bioenergy. In 19 days of operation, the phenol degradation efficiency was 70% at a current density of 17.10 mA/m2 and a voltage of 199 mV. The electrochemical analysis showed that the internal resistance was 312.58 Ω and the maximum specific capacitance value was 0.00020 F/g on day 30, which demonstrated mature biofilm production and its stability throughout the operation. The biofilm study and bacterial identification process revealed that the presence of conductive pili species (Bacillus genus) are the most dominant on the anode electrode. However, the present study also explained well the oxidation mechanism of rotten rice with phenol degradation. The most critical challenges for future recommendations are also enclosed in a separate section for the research community with concluding remarks.
Herbicides such as atrazine and humus substances such as fulvic acid are widely used in agricultural sector. They can be traced in surface and groundwater around the agriculture field at concentrations beyond the approved limit due to their mobility and persistence. Bismuth-based photocatalysts activated by visible light are potential materials for removing various organic pollutants from water bodies. These photocatalysts can also be suitable candidates for developing a hybrid membrane with anti-fouling properties. In this study, Bi2WO6 nanoparticles were synthesized via the hydrothermal method and integrated into the cellulose acetate (CA), polyetherimide (PEI), polysulfone (PSF) and polyvinylidene fluoride (PVDF) polymers via physical blending approach. The hybrid membranes were then characterized by FTIR, XPS and FESEM to confirm the chemical bonding, chemical composition and surface morphology of Bi2WO6. Thus, the pure water flux of CA (35.6 L m-2 h-1), PEI (46.56 L m-2 h-1), PSF (6.84 L m-2 h-1), and PVDF (68.47 L m-2 h-1) hybrid membranes has significantly enhanced than the pristine CA, PEI, PSF and PVDF membranes. The significant rejection of atrazine-fulvic acid was observed with hybrid membranes in the order of CA (84.1%) > PVDF (72.7%) > PEI (47.8%) > PSF (37.2%), and these membranes have shown an excellent flux recovery ratio than pristine membranes. Further, electrochemical quantification studies were performed to analyze the removal efficiency of atrazine-fulvic acid from water. In this present work, GO-modified SPE was employed for electrochemical sensing studies. The resultant CA hybrid membrane achieved removal efficiency of 84.08% for atrazine. It was observed that the Bi2WO6 established strong bonding with CA, and PVDF membranes, thus showing a significant removal efficiency and FRR than other hybrid and pristine membranes.
The bi-fluid photovoltaic thermal (PVT) collector was introduced to provide more heating options along with improved cooling capabilities for the PV module. Since its introduction, this type of PVT system has been investigated thoroughly in various original works. In this review paper, we intend to put the concept and applications of this technology into question and revise the main achievements and discoveries through research and development with a focus on climatic and operational parameters. The paper encompasses a critical review of the discussed research and future directions for PVT collectors. The main utilized operational modes are discussed in detail, which are (i) water used in both channels, (ii) water in one channel and air in the other, and (iii) air in both channels. The modes were found to lead to different enhancement and performance effects for the utilized photovoltaic modules. The impact of mass flow rate was also taken by keeping one working fluid constant while varying the other to obtain its impact on the energy and exergy efficiency of the collector. In some cases, the fluids were run simultaneously and, in other cases, independently.
Every day, more and more binding materials are being used in the construction industry all over the world. However, Portland cement (PC) is used as a binding material, and its production discharges a high amount of undesirable greenhouse gases into the environment. This research work is done to reduce the amount of greenhouse gases discharged during PC manufacturing and to reduce the cost and energy incurred in the cement manufacturing process by making effective consumption of industrial/agricultural wastes in the construction sector. Therefore, wheat straw ash (WSA) as an agricultural waste is utilized as cement replacement material, while used engine oil as an industrial waste is utilized as an air-entraining admixture in concrete. This study's main goal was to examine the cumulative impact of both waste materials on fresh (slump test) and hardened concrete (compressive strength, split tensile strength, water absorption, and dry density). The cement was replaced by up to 15% and used engine oil incorporated up to 0.75% by weight of cement. Moreover, the cubical samples were cast for determining the compressive strength, dry density, and water absorption, while the cylindrical specimen was cast for evaluating the splitting tensile strength of concrete. The results confirmed that compressive and tensile strengths augmented by 19.40% and 16.67%, at 10% cement replacement by wheat straw ash at 90 days, respectively. Besides, the workability, water absorption, dry density, and embodied carbon were decreased as the quantity of WSA increased with the mass of PC, and all of these properties are increased with the incorporation of used engine oil in concrete after 28 days, respectively.