Displaying publications 1221 - 1240 of 17216 in total

Abstract:
Sort:
  1. Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M
    Chemosphere, 2023 Dec;344:140412.
    PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412
    Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
    Matched MeSH terms: Animals
  2. Krug PJ, Caplins SA, Algoso K, Thomas K, Valdés ÁA, Wade R, et al.
    Proc Biol Sci, 2022 Apr 13;289(1972):20211855.
    PMID: 35382597 DOI: 10.1098/rspb.2021.1855
    Transitions to terrestriality have been associated with major animal radiations including land snails and slugs in Stylommatophora (>20 000 described species), the most successful lineage of 'pulmonates' (a non-monophyletic assemblage of air-breathing gastropods). However, phylogenomic studies have failed to robustly resolve relationships among traditional pulmonates and affiliated marine lineages that comprise clade Panpulmonata (Mollusca, Gastropoda), especially two key taxa: Sacoglossa, a group including photosynthetic sea slugs, and Siphonarioidea, intertidal limpet-like snails with a non-contractile pneumostome (narrow opening to a vascularized pallial cavity). To clarify the evolutionary history of the panpulmonate radiation, we performed phylogenomic analyses on datasets of up to 1160 nuclear protein-coding genes for 110 gastropods, including 40 new transcriptomes for Sacoglossa and Siphonarioidea. All 18 analyses recovered Sacoglossa as the sister group to a clade we named Pneumopulmonata, within which Siphonarioidea was sister to the remaining lineages in most analyses. Comparative modelling indicated shifts to marginal habitat (estuarine, mangrove and intertidal zones) preceded and accelerated the evolution of a pneumostome, present in the pneumopulmonate ancestor along with a one-sided plicate gill. These findings highlight key intermediate stages in the evolution of air-breathing snails, supporting the hypothesis that adaptation to marginal zones played an important role in major sea-to-land transitions.
    Matched MeSH terms: Animals
  3. Arham AF, Hasim NA, Mokhtar MI, Zainal N, Rusly NS, Amin L, et al.
    J Bioeth Inq, 2022 Dec;19(4):587-598.
    PMID: 36350531 DOI: 10.1007/s11673-022-10216-5
    The release of over 6,000 genetically modified mosquitoes (GMM) into uninhabited Malaysian forests in 2010 was a frantic step on the part of the Malaysian government to combat the spread of dengue fever. The field trial was designed to control and reduce the dengue vector by producing offspring that die in the early developmental stage, thus decreasing the local Aedes aegypti population below the dengue transmission threshold. However, the GMM trials were discontinued in Malaysia despite being technologically feasible. The lack of systematic studies in terms of cost-benefit analysis, questionable research efficacy and safety-related concerns might have contributed to the termination of the field trial. Hence, this research aims to evaluate the feasibility of GMM release in Malaysia by using a holistic approach based on an Islamic ethical-legal assessment under the maslahah-mafsadah (benefit-risk) concept. Three main strategies based on the maslahah-mafsadah concept approach have been applied: 1) an evidence-based approach, 2) an impact-based approach and, 3) a priority approach. The analysis concluded that GMM could be categorised as zanniyyah (probable). GMM is a promising alternative for dengue control, but many issues must be addressed before its widespread adoption.
    Matched MeSH terms: Animals
  4. Greatrex JE
    Med Anthropol, 2023 May 19;42(4):340-353.
    PMID: 37022723 DOI: 10.1080/01459740.2023.2185887
    In this article, I examine epidemiological research into scrub typhus in British Malaya between 1924 and 1974. Interwar research, I show, explained the incidence of the disease through conjunctions of rats, mites, plantations, lalang grass, and "jungle." In the process, interwar researchers bridged a novel scientific vocabulary centering on disease "reservoirs" with older suspicions of plantations enabling "pests," as well as with a later, explicitly ecological understanding of infectious disease. In exploring this history I thereby help to re-historicize the emergence of ecological notions of disease reservoirs, whilst also pushing at the limit-points of influential notions of "tropicality."
    Matched MeSH terms: Animals
  5. Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, et al.
    PeerJ, 2023;11:e16252.
    PMID: 37842055 DOI: 10.7717/peerj.16252
    Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
    Matched MeSH terms: Animals
  6. Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D
    Viruses, 2023 Oct 07;15(10).
    PMID: 37896839 DOI: 10.3390/v15102062
    Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
    Matched MeSH terms: Animals
  7. Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, et al.
    Proc Biol Sci, 2023 Oct 11;290(2008):20231107.
    PMID: 37788705 DOI: 10.1098/rspb.2023.1107
    Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
    Matched MeSH terms: Animals
  8. Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, et al.
    Int J Environ Res Public Health, 2021 May 27;18(11).
    PMID: 34071757 DOI: 10.3390/ijerph18115731
    Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.
    Matched MeSH terms: Animals
  9. Abd El-Aal AAA, Jayakumar FA, Lahiri C, Tan KO, Reginald K
    Sci Rep, 2023 Sep 06;13(1):14673.
    PMID: 37673929 DOI: 10.1038/s41598-023-41581-9
    Cryptides are a subfamily of bioactive peptides that exist in all living organisms. They are latently encrypted in their parent sequences and exhibit a wide range of biological activities when decrypted via in vivo or in vitro proteases. Cationic cryptides tend to be drawn to the negatively charged membranes of microbial and cancer cells, causing cell death through various mechanisms. This makes them promising candidates for alternative antimicrobial and anti-cancer therapies, as their mechanism of action is independent of gene mutations. In the current study, we employed an in silico approach to identify novel cationic cryptides with potential antimicrobial and anti-cancer activities in atypical and systematic strategy by reanalysis of a publicly available RNA-seq dataset of Pacific white shrimp (Penaus vannamei) in response to bacterial infection. Out of 12 cryptides identified, five were selected based on their net charges and potential for cell penetration. Following chemical synthesis, the cryptides were assayed in vitro to test for their biological activities. All five cryptides demonstrated a wide range of selective activity against the tested microbial and cancer cells, their anti-biofilm activities against mature biofilms, and their ability to interact with Gram-positive and negative bacterial membranes. Our research provides a framework for a comprehensive analysis of transcriptomes in various organisms to uncover novel bioactive cationic cryptides. This represents a significant step forward in combating the crisis of multi-drug-resistant microbial and cancer cells, as these cryptides neither induce mutations nor are influenced by mutations in the cells they target.
    Matched MeSH terms: Animals
  10. Ling MH, Ivorra T, Heo CC, Wardhana AH, Hall MJR, Tan SH, et al.
    Med Vet Entomol, 2023 Dec;37(4):767-781.
    PMID: 37477152 DOI: 10.1111/mve.12682
    In medical, veterinary and forensic entomology, the ease and affordability of image data acquisition have resulted in whole-image analysis becoming an invaluable approach for species identification. Krawtchouk moment invariants are a classical mathematical transformation that can extract local features from an image, thus allowing subtle species-specific biological variations to be accentuated for subsequent analyses. We extracted Krawtchouk moment invariant features from binarised wing images of 759 male fly specimens from the Calliphoridae, Sarcophagidae and Muscidae families (13 species and a species variant). Subsequently, we trained the Generalized, Unbiased, Interaction Detection and Estimation random forests classifier using linear discriminants derived from these features and inferred the species identity of specimens from the test samples. Fivefold cross-validation results show a 98.56 ± 0.38% (standard error) mean identification accuracy at the family level and a 91.04 ± 1.33% mean identification accuracy at the species level. The mean F1-score of 0.89 ± 0.02 reflects good balance of precision and recall properties of the model. The present study consolidates findings from previous small pilot studies of the usefulness of wing venation patterns for inferring species identities. Thus, the stage is set for the development of a mature data analytic ecosystem for routine computer image-based identification of fly species that are of medical, veterinary and forensic importance.
    Matched MeSH terms: Animals
  11. Bokhari N, Ali A, Yasmeen A, Khalid H, Safi SZ, Sharif F
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127284.
    PMID: 37806415 DOI: 10.1016/j.ijbiomac.2023.127284
    Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.
    Matched MeSH terms: Animals
  12. Azli B, Ravi S, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N
    BMC Genomics, 2021 Jun 19;22(1):461.
    PMID: 34147086 DOI: 10.1186/s12864-021-07690-3
    BACKGROUND: Infectious bursal disease (IBD) is an economically very important issue to the poultry industry and it is one of the major threats to the nation's food security. The pathogen, a highly pathogenic strain of a very virulent IBD virus causes high mortality and immunosuppression in chickens. The importance of understanding the underlying genes that could combat this disease is now of global interest in order to control future outbreaks. We had looked at identified novel genes that could elucidate the pathogenicity of the virus following infection and at possible disease resistance genes present in chickens.

    RESULTS: A set of sequences retrieved from IBD virus-infected chickens that did not map to the chicken reference genome were de novo assembled, clustered and analysed. From six inbred chicken lines, we managed to assemble 10,828 uni-transcripts and screened 618 uni-transcripts which were the most significant sequences to known genes, as determined by BLASTX searches. Based on the differentially expressed genes (DEGs) analysis, 12 commonly upregulated and 18 downregulated uni-genes present in all six inbred lines were identified with false discovery rate of q-value

    Matched MeSH terms: Animals
  13. Ong MLY, Green CG, Bongiovanni T, Heaney LM
    Benef Microbes, 2023 Dec 12;14(6):565-590.
    PMID: 38350483 DOI: 10.1163/18762891-20230069
    The gut microbiome is known to play an important role in the day-to-day physiology and health of the human host. It is, therefore, not surprising that there is interest surrounding the gut microbiome and its potential to benefit athletic health and performance. This has, in part, been driven by the consideration that gut bacterial by-products (i.e. metabolic waste) could be harnessed by the host and utilised for a beneficial outcome. The concept of harnessing bacterial metabolites as beneficial health modulators has developed the theory of leveraging short-chain fatty acids (SCFAs) as novel supplements for enhancing athletic performance. This review discusses the current literature investigating SCFA administration in cellular, animal, and human models, with the aim of linking the demonstrated physiological/biochemical mechanisms to potential exercise/athletic benefit. In addition, practical implications and factors relating to SCFA-supplementation in athletic populations are considered. The literature demonstrates a tangible rationale that SCFAs can have a positive impact on human physiology to afford benefits to the athletic population. These advantages include the capacity to improve respiratory immunity to combat elevated levels/severity of upper respiratory tract infections often reported in athletes; the blunting of pro-inflammatory and pro-fibrotic pathways to aid in exercise recovery; and the role of SCFAs as usable energy sources and metabolism modulators to fuel exercise and improve performance and/or endurance capacity. However, there is currently minimal research completed in human participants and thus further investigations into the direct benefit of SCFAs in exercise performance and/or recovery-based studies are required.
    Matched MeSH terms: Animals
  14. Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, et al.
    J Mol Model, 2024 Feb 13;30(3):68.
    PMID: 38347278 DOI: 10.1007/s00894-024-05875-7
    CONTEXT: Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity.

    METHODS: The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.

    Matched MeSH terms: Animals
  15. Phoon WH, Bell-Sakyi L, AbuBakar S, Chang LY
    Trop Biomed, 2023 Mar 01;40(1):29-36.
    PMID: 37356001 DOI: 10.47665/tb.40.1.009
    Nipah virus (NiV), a highly pathogenic henipavirus of the family Paramyxoviridae, which causes fatal encephalitis in 40-70% of affected patients, was first reported in Malaysia over 20 years ago. Pteropid bats are the natural hosts of henipaviruses, and ticks have been proposed as a possible link between bats and mammalian hosts. To investigate this hypothesis, infection of the tick cell line IDE8 with NiV was examined. Presence of viral RNA and antigen in the NiV-infected tick cells was confirmed. Infectious virions were recovered from NiV-infected tick cells and ultrastructural features of NiV were observed by electron microscopy. These results suggest that ticks could support NiV infection, potentially playing a role in transmission.
    Matched MeSH terms: Animals
  16. Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT
    Pharmacol Rev, 2022 Jan;74(1):238-270.
    PMID: 35017178 DOI: 10.1124/pharmrev.121.000293
    GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
    Matched MeSH terms: Animals
  17. Leong RZL, Lim LH, Chew YL, Teo SS
    Anim Biotechnol, 2023 Dec;34(9):4474-4487.
    PMID: 36576030 DOI: 10.1080/10495398.2022.2158094
    Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.
    Matched MeSH terms: Animals
  18. Roesma DI, Tjong DH, Syaifullah, Aidil DR, Maulana MR, Salis VM
    Pak J Biol Sci, 2023 Nov;26(12):615-627.
    PMID: 38334154 DOI: 10.3923/pjbs.2023.615.627
    <b>Background and Objective:</b> The <i>Helarctos malayanus</i> is the sole bear species-living in Indonesia (Sumatra and Borneo). The available biological data for sun bears (<i>H. malayanus</i>) in Sumatra is limited, especially for morphological and genetic data. A morphological approach is difficult to do. Therefore, a molecular approach is the most likely choice. Phylogenetic analysis was carried out on <i>H. malayanus</i> in Central Sumatra (Dharmasraya, South Solok and Riau) using the Cytochrome B gene. <b>Materials and Methods:</b> Blood samples from three individuals of <i>H. malayanus</i> were obtained at the Sumatran Tiger Rehabilitation Center, Dharmasraya. Three <i>H. malayanus</i> Central Sumatra sequences and 62 GenBank sequences were used in the analysis. The DNA sequences were analyzed using the DNA Star, AliView, Bioedit, DNA SP, haplotype network, IQ Tree and MEGA software. <b>Results:</b> Forty-one haplotypes were identified in 65 sequences, with 17 haplotypes belonging to <i>H. malayanus</i>. Haplotype network analysis divides <i>H. malayanus</i> into Haplogroup I (Sundaland) and Haplogroup II (Mainland). All individuals of <i>H. malayanus</i> in Central Sumatra have the same haplotype as Peninsular Malaysia sequence. The sun bear (<i>H. malayanus</i>) has a monophyletic relationship with other bear species. The <i>H. malayanus</i> has a higher genetic distance between the two lineages (1.0-2.3%) than the genetic distance within the subpopulations of each lineage. <b>Conclusion:</b> The study results supported sun bear (<i>H. malayanus</i>) divided into two different lineages: Mainland (subcluster 1) and Sundaland (subcluster 2 and 3). The geographic isolation causes the absence of gene flow, which results in high genetic distance between sun bears (<i>H. malayanus</i>) in Sundaland and Mainland lineages.
    Matched MeSH terms: Animals
  19. Zhang K, Ting HN, Choo YM
    Comput Methods Programs Biomed, 2024 Mar;245:108043.
    PMID: 38306944 DOI: 10.1016/j.cmpb.2024.108043
    BACKGROUND AND OBJECTIVE: Conflict may happen when more than one classifier is used to perform prediction or classification. The recognition model error leads to conflicting evidence. These conflicts can cause decision errors in a baby cry recognition and further decrease its recognition accuracy. Thus, the objective of this study is to propose a method that can effectively minimize the conflict among deep learning models and improve the accuracy of baby cry recognition.

    METHODS: An improved Dempster-Shafer evidence theory (DST) based on Wasserstein distance and Deng entropy was proposed to reduce the conflicts among the results by combining the credibility degree between evidence and the uncertainty degree of evidence. To validate the effectiveness of the proposed method, examples were analyzed, and applied in a baby cry recognition. The Whale optimization algorithm-Variational mode decomposition (WOA-VMD) was used to optimally decompose the baby cry signals. The deep features of decomposed components were extracted using the VGG16 model. Long Short-Term Memory (LSTM) models were used to classify baby cry signals. An improved DST decision method was used to obtain the decision fusion.

    RESULTS: The proposed fusion method achieves an accuracy of 90.15% in classifying three types of baby cry. Improvement between 2.90% and 4.98% was obtained over the existing DST fusion methods. Recognition accuracy was improved by between 5.79% and 11.53% when compared to the latest methods used in baby cry recognition.

    CONCLUSION: The proposed method optimally decomposes baby cry signal, effectively reduces the conflict among the results of deep learning models and improves the accuracy of baby cry recognition.

    Matched MeSH terms: Animals
  20. Karin BR, Lough-Stevens M, Lin TE, Reilly SB, Barley AJ, Das I, et al.
    BMC Ecol Evol, 2024 Feb 20;24(1):25.
    PMID: 38378475 DOI: 10.1186/s12862-024-02212-7
    BACKGROUND: Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework.

    RESULTS: Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions.

    CONCLUSIONS: Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.

    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links