METHODS: Water samples were collected from rivers, water tanks, wells and seawater on Tioman Island over the course of April to October 2015. Water samples were indirectly screened for Sarcocystis species by obtaining sediment from respective water sources. PCR amplification of the 18S rRNA gene region was conducted to identify positive samples. Microscopy was used in an attempt to reappraise PCR results, but no sporocysts were detected in any of the samples.
RESULTS: A total of 157 water samples were obtained and 19 were positive for various Sarcocystis species. Through BLASTn and phylogenetic analysis, these species were found to be S. singaporensis, S. nesbitti, Sarcocystis sp. YLL-2013 and one unidentified Sarcocystis species.
CONCLUSIONS: This is the first positive finding of S. nesbitti in water samples on Tioman Island, which was found in a water tank and in river water samples. This finding supports the hypothesis that water was a potential medium for the transmission of S. nesbitti during the outbreak. This will potentially identify areas in which preventive measures can be taken to prevent future outbreaks.
RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.
CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.
METHODS: Soil and water samples near leptospirosis patients' residences were collected, processed and cultured into EMJH media. Partial 16S rRNA gene sequencing was performed to confirm the identity of Leptospira.
RESULTS: EMJH culture and partial 16S rRNA gene sequencing revealed predominant growth of pathogenic Leptospira kmetyi (17%, n=7/42). All tested locations had at least one Leptospira sp., mostly from the soil samples.
CONCLUSION: More than one species of Leptospira may be present in a sampling area. The most common environmental isolates were pathogenic L. kmetyi.
METHODS: The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software.
RESULTS: A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar.
CONCLUSIONS: Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.