Methods: Twenty-four adult male Balb/C mice were divided into six groups: i) normal diet; ii) positive control diet; iii) negative control diet; and iv) HFD with SCGO at 12.5 mg/kg body weight (mg/kg BW); v) HFD with SCGO at 25 mg/kg BW, vi) HFD with SCGO at 50 mg/kg BW. Liver weight and morphology, spleen weight, serum levels of superoxide dismutase (SOD) and tumour necrosis factor α (TNF-α), TNF-α expression in the aorta and lipid profiles were assessed at the end of the experimental period.
Results: SCGO treatment was associated with significant decreases in liver and spleen weight as well as amelioration of hepatic steatosis. SCGO treatment also decreased TNF-α levels and expression. Serum levels of SOD in the SCGO groups were significantly increased compared with the negative control group. Lipid profiles were improved in the SCGO treatment groups compared with the negative control group.
Conclusion: SCGO as an herbal medicine could be an effective treatment for degenerative disorders caused by HFD.
Methods: Mice (n = 48) were fed high-fat diet (HFD) for 25 weeks to induce obesity, after which half were maintained on HFD and half switched to low-fat diet (LFD)while they were given normal water (H2O) or 0.1% (w/v) SCE in water at week 0-4 which was increased to 1% (w/v) at week 5-9. Effects of treatment with SCE were compared between HFDH2O, HFDSCE, LFDH2O and LFDSCE groups. Respiratory exchange ratios (RER) were measured at weeks 0, 5 and 10. Food, water intake and body weight were measured weekly. Plasma lipid profile and organ weights were determined at week 10.
Results: SCE had significantly reduced RER at week 9 (P = 0.011). Food intake, body weight, and abdominal adipose tissue weight were not altered by SCE at weeks 5 and 10. However, significant increase in plasma and liver cholesterol (P < 0.050) was observed.
Conclusion: Our findings suggest that SCE induced lipolysis and body fat oxidation and increased energy expenditure. Further studies in other animal models should be done to confirm the consistency of these results.
Methods: Inbred mice received saline, DMSO and amygdalin, as control groups. ER stress was induced by tunicamycin (TM) injection. Amygdalin was administered 1 h before the TM challenge (Amy + TM group). Mice body and liver weights were measured. Hematoxylin and eosin (H&E) and oil red O staining from liver tissue, were performed. Alanin aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and cholesterol levels were measured.
Results: Histological evaluation revealed that amygdalin was unable to decrease the TM induced liver steatosis; however, ALT and AST levels decreased [ALT: 35.33(2.15) U/L versus 92.33(6.66) U/L; (57.000, (50.63, 63.36),P< 0.001) and AST: 93(5.09) U/L versus 345(97.3) U/L, (252, (163.37, 340.62),P< 0.001)]. Amygdalin also decreased triglyceride and cholesterol plasma levels in the Amy + TM group [TG: 42.66(2.15) versus 53.33(7.24) mg/dL; (10.67, (3.80, 17.54),P= 0.006) and TC: 9.33(3.55) versus 112.66(4.31) mg/dL, (103.33, (98.25, 108.40)P< 0.001)].
Conclusion: Amygdalin improved the ALT, AST, and lipid serum levels after the TM challenge; however, it could not attenuate hepatic steatosis.
METHODOLOGY: From January 2001 to December 2005, we reviewed case reports of all bacteraemic melioidosis admitted to a tertiary teaching hospital, Hospital Universiti Sains Malaysia.
RESULTS: Thirty-five patients had positive blood culture for meliodosis and 27 case reports were traceable for further analysis. The mean age was 46.8 + 20.0 years. Twenty patients (74.1%) were male. The main clinical presentation was fever that occurred in 23 (85.2%) patients. Eighteen patients (66.7%) had lung involvement and three patients had liver abscess. Two patients presented with scrotal swelling, one of whom further developed Fournier's Gangrene. Nineteen (70.4%) patients had underlying diabetes, five of whom were newly diagnosed during the admission. Thirteen (48.1%) patients were treated with high-dose ceftazidime and six (22.2%) patients were treated with imipenem. Eight (29.6%) patients were not given anti-melioidosis therapy because the causative agents were not identified until after the patients died. The patients were admitted 16.8 days + 18.1. Seventeen patients (63.0%) died in this series, 13 patients of whom died within four days of admission.
CONCLUSIONS: The wide range of clinical presentations and the fatal outcomes of melioidosis require a high level of suspicion among physicians to develop an early appropriate therapy and reduce the mortality rate.
METHODS: A total of 509 patients with MetS were recruited. All were diagnosed by clinicians with ultrasonography-confirmed whether they were patients with NAFLD. Patients were randomly divided into derivation (n=400) and validation (n=109) cohort. To develop the risk score, clinical risk indicators measured at the time of recruitment were built by logistic regression. Regression coefficients were transformed into item scores and added up to a total score. A risk scoring scheme was developed from clinical predictors: BMI ≥25, AST/ALT ≥1, ALT ≥40, type 2 diabetes mellitus and central obesity. The scoring scheme was applied in validation cohort to test the performance.
RESULTS: The scheme explained, by area under the receiver operating characteristic curve (AuROC), 76.8% of being NAFLD with good calibration (Hosmer-Lemeshow χ2 =4.35; P=.629). The positive likelihood ratio of NAFLD in patients with low risk (scores below 3) and high risk (scores 5 and over) were 2.32 (95% CI: 1.90-2.82) and 7.77 (95% CI: 2.47-24.47) respectively. When applied in validation cohort, the score showed good performance with AuROC 76.7%, and illustrated 84%, and 100% certainty in low- and high-risk groups respectively.
CONCLUSIONS: A simple and non-invasive scoring scheme of five predictors provides good prediction indices for NAFLD in MetS patients. This scheme may help clinicians in order to take further appropriate action.