SIGNIFICANCE: Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.
METHODS: A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC.
RESULTS: The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons.
CONCLUSIONS: We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
METHODS: A total of 12,901 breast cancer cases and 12,583 controls from 12 case-control studies were included in our pooled analysis. HLA imputation was performed using SNP2HLA on 10,886 quality-controlled variants within the 15-55 Mb region on chromosome 6. HLA alleles (n = 175) with info scores greater than 0.8 and frequencies greater than 0.01 were included (resolution at two-digit level: 71; four-digit level: 104). We studied the associations between HLA alleles and breast cancer risk using logistic regression, adjusting for population structure and age. Associations between HLA alleles and the risk of subtypes of breast cancer (ER-positive, ER-negative, HER2-positive, HER2-negative, early-stage, and late-stage) were examined.
RESULTS: We did not observe associations between any HLA allele and breast cancer risk at P
METHODS: Gene panel sequencing was performed for 34 known or suspected breast cancer predisposition genes, of which nine genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, and TP53) were associated with breast cancer risk. Associations between PTV carriership in one or more genes and tumor characteristics were examined using multinomial logistic regression. Ten-year overall survival was estimated using Cox regression models in 6477 breast cancer patients after excluding older patients (≥75years) and stage 0 and IV disease.
RESULTS: PTV9genes carriership (n = 690) was significantly associated (p < 0.001) with more aggressive tumor characteristics including high grade (poorly vs well-differentiated, odds ratio [95% confidence interval] 3.48 [2.35-5.17], moderately vs well-differentiated 2.33 [1.56-3.49]), as well as luminal B [HER-] and triple-negative subtypes (vs luminal A 2.15 [1.58-2.92] and 2.85 [2.17-3.73], respectively), adjusted for age at diagnosis, study, and ethnicity. Associations with grade and luminal B [HER2-] subtype remained significant after excluding BRCA1/2 carriers. PTV25genes carriership (n = 289, excluding carriers of the nine genes associated with breast cancer) was not associated with tumor characteristics. However, PTV25genes carriership, but not PTV9genes carriership, was suggested to be associated with worse 10-year overall survival (hazard ratio [CI] 1.63 [1.16-2.28]).
CONCLUSIONS: PTV9genes carriership is associated with more aggressive tumors. Variants in other genes might be associated with the survival of breast cancer patients. The finding that PTV carriership is not just associated with higher breast cancer risk, but also more severe and fatal forms of the disease, suggests that genetic testing has the potential to provide additional health information and help healthy individuals make screening decisions.
METHODS: We evaluated 88 breast cancer risk variants that were identified previously by GWAS in 11,760 cases and 11,612 controls of Asian ancestry. SNPs confirmed to be associated with breast cancer risk in Asian women were used to construct a polygenic risk score (PRS). The relative and absolute risks of breast cancer by the PRS percentiles were estimated based on the PRS distribution, and were used to stratify women into different levels of breast cancer risk.
RESULTS: We confirmed significant associations with breast cancer risk for SNPs in 44 of the 78 previously reported loci at P
METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.
RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).
CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.
METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations.
RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10-9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 4.3 × 10-9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC risk (OR = 1.27, P = 9.0 × 10-8). Overall EOC risk was associated with rs10260419 at chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10-7) and rs74917072 at chromosome 2q37.3 (OR = 1.25, P = 4.7 × 10-7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10-7).
CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.
METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.
FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P
METHODS: We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric (GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441), with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a random intercept for woman, to estimate processed-raw MD differences.
RESULTS: Breast area did not differ in processed images compared with that in raw images, but the percent MD was higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI: 0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE 0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: -0.10, 0.23)). Additionally, within each system, reader-specific differences varied in magnitude and direction (p
METHODS AND FINDINGS: We examined cross-sectional differences in MD by age and menopausal status in over 11,000 breast-cancer-free women aged 35-85 years, from 40 ethnicity- and location-specific population groups across 22 countries in the International Consortium on Mammographic Density (ICMD). MD was read centrally using a quantitative method (Cumulus) and its square-root metrics were analysed using meta-analysis of group-level estimates and linear regression models of pooled data, adjusted for body mass index, reproductive factors, mammogram view, image type, and reader. In all, 4,534 women were premenopausal, and 6,481 postmenopausal, at the time of mammography. A large age-adjusted difference in percent MD (PD) between post- and premenopausal women was apparent (-0.46 cm [95% CI: -0.53, -0.39]) and appeared greater in women with lower breast cancer risk profiles; variation across population groups due to heterogeneity (I2) was 16.5%. Among premenopausal women, the √PD difference per 10-year increase in age was -0.24 cm (95% CI: -0.34, -0.14; I2 = 30%), reflecting a compositional change (lower dense area and higher non-dense area, with no difference in breast area). In postmenopausal women, the corresponding difference in √PD (-0.38 cm [95% CI: -0.44, -0.33]; I2 = 30%) was additionally driven by increasing breast area. The study is limited by different mammography systems and its cross-sectional rather than longitudinal nature.
CONCLUSIONS: Declines in MD with increasing age are present premenopausally, continue postmenopausally, and are most pronounced over the menopausal transition. These effects were highly consistent across diverse groups of women worldwide, suggesting that they result from an intrinsic biological, likely hormonal, mechanism common to women. If cumulative breast density is a key determinant of breast cancer risk, younger ages may be the more critical periods for lifestyle modifications aimed at breast density and breast cancer risk reduction.
METHODS: The Mainstreaming Genetic Counselling for Ovarian Cancer Patients (MaGiC) study is a prospective, two-arm observational study comparing oncologist-led and genetics-led counselling. This study included 790 multiethnic patients with ovarian cancer from 23 sites in Malaysia. We compared the impact of different method of delivery of genetic counselling on the uptake of genetic testing and assessed the feasibility, knowledge and satisfaction of patients with ovarian cancer.
RESULTS: Oncologists were satisfied with the mainstreaming experience, with 95% indicating a desire to incorporate testing into their clinical practice. The uptake of genetic testing was similar in the mainstreaming and genetics arm (80% and 79%, respectively). Patient satisfaction was high, whereas decision conflict and psychological impact were low in both arms of the study. Notably, decisional conflict, although lower than threshold, was higher for the mainstreaming group compared with the genetics arm. Overall, 13.5% of patients had a pathogenic variant in BRCA1 or BRCA2, and there was no difference between psychosocial measures for carriers in both arms.
CONCLUSION: The MaGiC study demonstrates that mainstreaming cancer genetics is feasible in low-resource and middle-resource Asian setting and increased coverage for genetic testing.