Displaying publications 121 - 140 of 1250 in total

Abstract:
Sort:
  1. Fatahi S, Nazary-Vannani A, Sohouli MH, Mokhtari Z, Kord-Varkaneh H, Moodi V, et al.
    Crit Rev Food Sci Nutr, 2021;61(20):3383-3394.
    PMID: 32744094 DOI: 10.1080/10408398.2020.1798350
    Inconsistencies exist with regard to influence of fasting and energy-restricting diets on markers of glucose and insulin controls. To address these controversial, this study was conducted to determine the impact of fasting diets on fasting blood sugars (FBSs), insulin, homeostatic model assessment insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) levels. A comprehensive systematic search was carried out in electronic databases, i.e., Scopus, PubMed, and Web of Science through June 2019 for RCTs that investigated the impact of fasting and energy-restricting diets on circulating FBS, insulin, HOMA-IR and HbA1c levels from. Weighted mean difference (WMD) with the 95% CI were used for estimating combined effect size. The subgroup analysis was applied to specify the source of heterogeneity among articles. Pooled results from 30 eligible articles with 35 arms demonstrated a significant decrease in FBS (WMD): -3.376 mg/dl, 95% CI: -5.159, -1.594, p 8 weeks had a greater reduction in FBS, insulin and HOMA-IR level compared with other subgroups. The evidence from available studies suggests that the fasting or energy-restricting diets leads to significant reductions in FBS, insulin and HOMA-IR level and has modest, but, non-significant effects on HbA1c levels.
    Matched MeSH terms: Blood Glucose; Glucose
  2. Vermunt J, Bragg F, Halsey J, Yang L, Chen Y, Guo Y, et al.
    PMID: 34728472 DOI: 10.1136/bmjdrc-2021-002495
    INTRODUCTION: We examined the associations between long-term usual random plasma glucose (RPG) levels and cause-specific mortality risks among adults without known diabetes in China.

    RESEARCH DESIGN AND METHODS: The China Kadoorie Biobank recruited 512,891 adults (59% women) aged 30-79 from 10 regions of China during 2004-2008. At baseline survey, and subsequent resurveys of a random subset of survivors, participants were interviewed and measurements collected, including on-site RPG testing. Cause of death was ascertained via linkage to local mortality registries. Cox regression yielded adjusted HR for all-cause and cause-specific mortality associated with usual levels of RPG.

    RESULTS: During median 11 years' follow-up, 37,214 deaths occurred among 452,993 participants without prior diagnosed diabetes or other chronic diseases. There were positive log-linear relationships between RPG and all-cause, cardiovascular disease (CVD) (n=14,209) and chronic kidney disease (CKD) (n=432) mortality down to usual RPG levels of at least 5.1 mmol/L. At RPG <11.1 mmol/L, each 1.0 mmol/L higher usual RPG was associated with adjusted HRs of 1.14 (95% CI 1.12 to 1.16), 1.16 (1.12 to 1.19) and 1.44 (1.22 to 1.70) for all-cause, CVD and CKD mortality, respectively. Usual RPG was positively associated with chronic liver disease (n=547; 1.45 (1.26 to 1.66)) and cancer (n=12,680; 1.12 (1.09 to 1.16)) mortality, but with comparably lower risks at baseline RPG ≥11.1 mmol/L. These associations persisted after excluding participants who developed diabetes during follow-up.

    CONCLUSIONS: Among Chinese adults without diabetes, higher RPG levels were associated with higher mortality risks from several major diseases, with no evidence of apparent thresholds below the cut-points for diabetes diagnosis.

    Matched MeSH terms: Blood Glucose*
  3. Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM
    J Pharm Bioallied Sci, 2017 Jul-Sep;9(3):164-170.
    PMID: 28979070 DOI: 10.4103/jpbs.JPBS_35_17
    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
    Matched MeSH terms: Blood Glucose; Glucose
  4. Jadhav PB, Jadhav SB, Zehravi M, Mubarak MS, Islam F, Jeandet P, et al.
    Molecules, 2022 Dec 24;28(1).
    PMID: 36615348 DOI: 10.3390/molecules28010149
    Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
    Matched MeSH terms: Blood Glucose/analysis
  5. Syed Yaacob SN, Huyop F, Misson M, Abdul Wahab R, Huda N
    PeerJ, 2022;10:e13053.
    PMID: 35345581 DOI: 10.7717/peerj.13053
    BACKGROUND: Honey produced by Heterotrigona itama is highly preferred among consumers due to its high-value as a functional food and beneficial lactic acid bacteria (LAB) reservoir. Fructophilic lactic acid bacteria (FLAB) are a group of LAB with unique growth characteristics and are regarded as promising producers of bioactive compounds. Hence, it is not surprising that LAB, especially FLAB, may be involved with the excellent bioactivity of H. itama honey. With the trending consumer preference for H. itama honey coupled with increasing awareness for healthy food, the genomic background of FLAB isolated from this honey must, therefore, be clearly understood. In this study, one FLAB strain designated as Sy-1 was isolated from freshly collected H. itama honey. Its FLAB behavior and genomic features were investigated to uncover functional genes that could add value to functional food.

    METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.

    RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.

    DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.

    Matched MeSH terms: Glucose/metabolism
  6. Goh KG, Zakaria MH, Raja Azwan RN, Bhajan Singh KK, Badrul Hisham MH, Hussein Z
    Diabetes Metab Syndr, 2023 Jan;17(1):102680.
    PMID: 36473336 DOI: 10.1016/j.dsx.2022.102680
    BACKGROUND AND AIMS: Patients with type 2 diabetes (T2D) carry higher risk of glycaemic variability during Ramadan. Glucose-lowering medications such as SGLT2 inhibitors are also associated with genitourinary infection, acute kidney injury, and euglycaemic diabetic ketoacidosis. Limited data is available on the effects of SGLT2 inhibitors on T2D patients during Ramadan. We investigated effects of empagliflozin use in fasting T2D patients.

    METHODS: This was a prospective cohort study in a single diabetes centre in Malaysia. Empagliflozin group were on study drug for at least three months. For control group, subjects not receiving SGLT2 inhibitors were recruited. Follow-up were performed before and during Ramadan fasting. Anthropometric measurements, blood pressure, renal profile, and blood ketone were recorded during visits. Hypoglycaemia symptoms were assessed via hypoglycaemia symptom rating questionnaire (HypoSRQ).

    RESULTS: We recruited a total of 98 subjects. Baseline anthropometry, blood pressure, and renal parameters were similar in two groups. No significant changes in blood pressure, weight, urea, creatinine, eGFR, or haemoglobin levels during Ramadan was found in either group. Likewise, no difference was detected in blood ketone levels (empagliflozin vs control, 0.17 ± 0.247 mmol/L vs 0.13 ± 0.082 mmol/L, p = 0.304) or hypoglycaemia indices (empagliflozin vs control, 19.1% vs 16%, p = 0.684).

    CONCLUSIONS: Ramadan fasting resulted in weight loss and reduction in eGFR levels in patients with T2D. Empagliflozin use during Ramadan is safe and not associated with increased risk of dehydration, ketosis, or hypoglycaemia. Therefore, empagliflozin is a viable glucose-lowering drug for patients with T2D planning for Ramadan fasting.

    Matched MeSH terms: Blood Glucose; Glucose
  7. Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM
    Sports Med, 2023 Feb;53(2):327-348.
    PMID: 36441492 DOI: 10.1007/s40279-022-01782-0
    Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
    Matched MeSH terms: Blood Glucose*
  8. Miller V, Jenkins DA, Dehghan M, Srichaikul K, Rangarajan S, Mente A, et al.
    Lancet Diabetes Endocrinol, 2024 May;12(5):330-338.
    PMID: 38588684 DOI: 10.1016/S2213-8587(24)00069-X
    BACKGROUND: The association between the glycaemic index and the glycaemic load with type 2 diabetes incidence is controversial. We aimed to evaluate this association in an international cohort with diverse glycaemic index and glycaemic load diets.

    METHODS: The PURE study is a prospective cohort study of 127 594 adults aged 35-70 years from 20 high-income, middle-income, and low-income countries. Diet was assessed at baseline using country-specific validated food frequency questionnaires. The glycaemic index and the glycaemic load were estimated on the basis of the intake of seven categories of carbohydrate-containing foods. Participants were categorised into quintiles of glycaemic index and glycaemic load. The primary outcome was incident type 2 diabetes. Multivariable Cox Frailty models with random intercepts for study centre were used to calculate hazard ratios (HRs).

    FINDINGS: During a median follow-up of 11·8 years (IQR 9·0-13·0), 7326 (5·7%) incident cases of type 2 diabetes occurred. In multivariable adjusted analyses, a diet with a higher glycaemic index was significantly associated with a higher risk of diabetes (quintile 5 vs quintile 1; HR 1·15 [95% CI 1·03-1·29]). Participants in the highest quintile of the glycaemic load had a higher risk of incident type 2 diabetes compared with those in the lowest quintile (HR 1·21, 95% CI 1·06-1·37). The glycaemic index was more strongly associated with diabetes among individuals with a higher BMI (quintile 5 vs quintile 1; HR 1·23 [95% CI 1·08-1·41]) than those with a lower BMI (quintile 5 vs quintile 1; 1·10 [0·87-1·39]; p interaction=0·030).

    INTERPRETATION: Diets with a high glycaemic index and a high glycaemic load were associated with a higher risk of incident type 2 diabetes in a multinational cohort spanning five continents. Our findings suggest that consuming low glycaemic index and low glycaemic load diets might prevent the development of type 2 diabetes.

    FUNDING: Full funding sources are listed at the end of the Article.

    Matched MeSH terms: Blood Glucose/analysis
  9. Tan PC, Norazilah MJ, Omar SZ
    Obstet Gynecol, 2013 Feb;121(2 Pt 1):291-298.
    PMID: 23232754 DOI: 10.1097/AOG.0b013e31827c5e99
    OBJECTIVE: To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum.

    METHODS: Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours.

    RESULTS: Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different.

    CONCLUSIONS: Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes.

    CLINICAL TRIAL REGISTRATION: ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409.

    LEVEL OF EVIDENCE: I.

    Matched MeSH terms: Glucose/therapeutic use*
  10. Tan PC, Norazilah MJ, Omar SZ
    Obstet Gynecol, 2013 Jun;121(6):1360.
    PMID: 23812475 DOI: 10.1097/AOG.0b013e31829395ef
    Matched MeSH terms: Glucose/therapeutic use*
  11. Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, et al.
    World J Microbiol Biotechnol, 2024 Jun 13;40(8):242.
    PMID: 38869634 DOI: 10.1007/s11274-024-04041-8
    Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
    Matched MeSH terms: Glucose/metabolism
  12. Anuar NS, Shafie SA, Maznan MAF, Zin NSNM, Azmi NAS, Raoof RA, et al.
    Toxicol Appl Pharmacol, 2023 Jul 01;470:116558.
    PMID: 37211320 DOI: 10.1016/j.taap.2023.116558
    Lauric acid, a 12‑carbon atom medium chain fatty acid (MCFA) has strong antioxidant and antidiabetic activities. However, whether lauric acid can ameliorate hyperglycaemia-induced male reproductive damage remains unclear. The study aimed to determine the optimal dose of lauric acid with glucose-lowering activity, antioxidant potential and tissue-protective effects on the testis and epididymis of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemia was induced in Sprague Dawley rats by an intravenous injection of STZ at a dose of 40 mg/kg body weight (bwt). Lauric acid (25, 50 and 100 mg/kg bwt) was administered orally for eight weeks. Weekly fasting blood glucose (FBG), glucose tolerance and insulin sensitivity were examined. Hormonal profiles (insulin and testosterone), lipid peroxidation (MDA) and antioxidant enzyme (SOD and CAT) activities were measured in the serum, testis and epididymis. The reproductive analyses were evaluated based on sperm quality and histomorphometry. Lauric acid administration significantly improved FBG levels, glucose tolerance, hormones-related fertility and oxidant-antioxidant balance in the serum, testis and epididymis compared to untreated diabetic rats. Treatment with lauric acid preserved the testicular and epididymal histomorphometry, along with the significant improvements in sperm characteristics. It is shown for the first time that lauric acid treatment at 50 mg/kg bwt is the optimal dose for ameliorating hyperglycaemia-induced male reproductive complications. We conclude that lauric acid reduced hyperglycaemia by restoring insulin and glucose homeostasis, which attributes to the regeneration of tissue damage and sperm quality in STZ-induced diabetic rats. These findings support the correlation between oxidative stress and hyperglycaemia-induced male reproductive dysfunctions.
    Matched MeSH terms: Glucose/metabolism
  13. Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, et al.
    Microb Cell Fact, 2020 Sep 09;19(1):179.
    PMID: 32907579 DOI: 10.1186/s12934-020-01434-w
    BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources.

    RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures.

    CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.

    Matched MeSH terms: Glucose/metabolism*
  14. Takahashi K, Hirose Y, Kamimura N, Hishiyama S, Hara H, Araki T, et al.
    Appl Environ Microbiol, 2015 Dec;81(23):8022-36.
    PMID: 26362985 DOI: 10.1128/AEM.02391-15
    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (-)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain.
    Matched MeSH terms: Glucose; Glucose 1-Dehydrogenase
  15. Azaman SNA, Wong DCJ, Tan SW, Yusoff FM, Nagao N, Yeap SK
    Sci Rep, 2020 Oct 15;10(1):17331.
    PMID: 33060668 DOI: 10.1038/s41598-020-74410-4
    Chlorella can produce an unusually wide range of metabolites under various nutrient availability, carbon source, and light availability. Glucose, an essential molecule for the growth of microorganisms, also contributes significantly to the metabolism of various metabolic compounds produced by Chlorella. In addition, manipulation of light intensity also induces the formation of secondary metabolites such as pigments, and carotenoids in Chlorella. This study will focus on the effect of glucose addition, and moderate light on the regulation of carotenoid, lipid, starch, and other key metabolic pathways in Chlorella sorokiniana. To gain knowledge about this, we performed transcriptome profiling on C. sorokiniana strain NIES-2168 in response to moderate light stress supplemented with glucose under mixotrophic conditions. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length was obtained from both normal, and mixotrophic samples of C. sorokiniana. After pre-processing, 93.63% high-quality PE reads were obtained, and 18,310 predicted full-length transcripts were assembled. Differential gene expression showed that a total of 937, and 1124 genes were upregulated, and downregulated in mixotrophic samples, respectively. Transcriptome analysis revealed that the mixotrophic condition caused upregulation of genes involved in carotenoids production (specifically lutein biosynthesis), fatty acid biosynthesis, TAG accumulation, and the majority of the carbon fixation pathways. Conversely, starch biosynthesis, sucrose biosynthesis, and isoprenoid biosynthesis were downregulated. Novel insights into the pathways that link the enhanced production of valuable metabolites (such as carotenoids in C. sorokiniana) grown under mixotrophic conditions is presented.
    Matched MeSH terms: Glucose/metabolism*
  16. Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, et al.
    Drug Des Devel Ther, 2023;17:1907-1932.
    PMID: 37397787 DOI: 10.2147/DDDT.S409373
    Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
    Matched MeSH terms: Glucose/metabolism
  17. Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, et al.
    Molecules, 2023 Jul 12;28(14).
    PMID: 37513223 DOI: 10.3390/molecules28145350
    Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
    Matched MeSH terms: Glucose/pharmacology
  18. Leal J, Becker F, Lim LL, Holman RR, Gray AM
    J Diabetes, 2022 Jul;14(7):455-464.
    PMID: 35876124 DOI: 10.1111/1753-0407.13294
    BACKGROUND: We estimate health-related quality of life and the impact of four cardiovascular events (myocardial infarction [MI], stroke, congestive heart failure, angina) and gastrointestinal events in 6522 Chinese patients with coronary heart disease (CHD) and impaired glucose tolerance (IGT) participating in the Acarbose Cardiovascular Evaluation (ACE) trial.

    METHODS: Health-related quality of life was captured using the EuroQol-5 Dimension-3 Level (EQ-5D-3L), with data collected at baseline and throughout the trial. Multilevel mixed-effects linear regression with random effects estimated health-related quality of life over time, capturing variation between hospital sites and individuals, and a fixed-effects linear model estimated the impact of cardiovascular and gastrointestinal events.

    RESULTS: Patients were followed for a median of 5 years (interquartile range 3.4-6.0). The average baseline EQ-5D score of 0.930 (SD 0.104) remained relatively unchanged over the trial period with no evidence of statistically significant differences in EQ-5D score between randomized treatment groups. The largest decrement in the year of an event was estimated for stroke (-0.107, P 

    Matched MeSH terms: Glucose Intolerance*
  19. Ng SM, Malene IV, Nguyen TK, Le K, Lim YXL, Lek N, et al.
    BMC Endocr Disord, 2023 Nov 16;23(1):249.
    PMID: 37974071 DOI: 10.1186/s12902-023-01501-4
    BACKGROUND: There is minimal data of health outcomes for Type 1 Diabetes (T1D) in Southeast Asia (SEA) where government funding of insulin and blood glucose monitoring either do not exist or is limited. The full impact of Covid-19 pandemic on the national economies of SEA remain unknown. In the midst of the pandemic, in 2021, HelloType1 was developed by Action4Diabetes (A4D), a non-government organisation charity in collaboration with Southeast Asia local healthcare professionals as an innovative digital educational resource platform of T1D in local languages. HelloType1 was launched in Cambodia, Vietnam, Thailand and Malaysia in 2021 to 2022 with Memorandums of Understandings (MOUs) signed between A4D and each country. Internet data analytics were undertaken between the 1st of January 2022 to 31st of December 2022.

    AIMS: The aims of this study were to explore the usability and internet data analytics of the HelloType1 online educational platform within each country.

    METHODS: The data analytics were extracted Google analytics that tracks data from the website hellotype1.com and Facebook analytics associated with the website.

    RESULTS: There was a 147% increase in the number of HelloType1 users between the first 6 months versus the latter 6 months in 2022 and a 15% increase in the number of pages visited were noted. The majority of traffic source were coming from organic searches with a significant increase of 80% growth in 2022.

    CONCLUSIONS: The results of the analytics provide important insights on how an innovative diabetes digital educational resource in local languages may be optimally delivered in low-middle income countries with limited resources.

    Matched MeSH terms: Blood Glucose; Blood Glucose Self-Monitoring
  20. Bachok MF, Yusof BN, Ismail A, Hamid AA
    Asia Pac J Clin Nutr, 2014;23(3):369-76.
    PMID: 25164446 DOI: 10.6133/apjcn.2014.23.3.01
    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis.
    Matched MeSH terms: Blood Glucose/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links