Displaying publications 121 - 140 of 235 in total

Abstract:
Sort:
  1. Aina Aqila Arman Alim, Rizafizah Othaman
    Sains Malaysiana, 2018;47:1517-1525.
    Epoxidized natural rubber/polyvinyl chloride/microcrystalline cellulose (ENR/PVC/MCC) composite membranes were
    prepared and used to treat palm oil mill effluent (POME). The loadings of MCC were varied at 0, 5, 10 and 15 w/w%. The
    increment of MCC loads has intensified the hydroxyl peak of the membranes in FTIR spectrum, indicating the increase
    in membrane hydrophilicity. MCC acted as a pore forming agent since the ENR/PVC/10% MCC gave the highest water
    flux and well-distributed pores. After first treatment of POME, the levels of chemical oxygen demand (COD), biochemical
    oxygen demand (BOD) and total suspended solid (TSS) were reduced to 99.9%, 70.3%, and 16.9%, respectively. These
    data showed that ENR/PVC/MCC membrane has the potential to treat POME.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  2. Mohd Shaiful Sajab, Wan Nurmawaddah Wan Abdul Rahman, Chin Hua Chia, Sarani Zakaria, Hatika Kaco, An’amt Mohamed Noor
    Sains Malaysiana, 2018;47:1891-1896.
    Absorption is one of the effective, simple and economical methods to remove oil from oily wastewater. The most widely
    used approach is to utilize lignocellulosic biomass as oil absorbent. However, the hygroscopic of cellulose have limited
    the oil-water separation capability of lignocellulosic fibers. In this study, the surface functionality of oil palm empty
    fruit bunch (EFB) fibers was slightly altered by grafting reduced graphene oxide (rGO). The modified EFB fibers show
    a distinct morphological and chemical characteristics changes as the surface of fibers has been coated with rGO. This
    was supported by FTIR analysis with the diminishing peak of hydroxyl group region of EFB fibers. While the surface
    modification on EFB fibers shows a diminution of a hydrophilic characteristic of 131.6% water absorption in comparison
    with 268.9% of untreated EFB fibers. Moreover, modified fibers demonstrated an oil-water separation increment as well,
    as it shows 89% of oil uptake and improved ~17 times of oil selectivity in oil-water emulsion than untreated EFB fibers.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  3. Manawi Y, Kochkodan V, Mahmoudi E, Johnson DJ, Mohammad AW, Atieh MA
    Sci Rep, 2017 Nov 20;7(1):15831.
    PMID: 29158521 DOI: 10.1038/s41598-017-14735-9
    Novel polyethersulfone (PES) membranes blended with 0.1-3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  4. Brishti, F.H., Zarei, M., Muhammad, S.K.S., Ismail-Fitry, M.R., Shukri, R., Saari, N.
    MyJurnal
    Mung bean is considered a ‘green pearl’ for its relatively high protein content; however, it has limited application as a raw material for industrial food products. As the potential use of mung beans relies on its protein behavior, this study characterized the functional properties of mung bean protein isolates and the results were compared with soy protein isolates. The protein isolates were prepared from mung bean and soy bean flours via extraction with 1 N NaOH, precipitated at pH 4, and subsequently freeze-dried. The amino acid profile as well as the hydrophilic and hydrophobic ratio of mung bean protein isolate, had been comparable with soy protein isolate. The water and oil absorption capacities as well as the denaturation temperature of mung bean protein isolate, were found to be similar with those of soy bean protein isolate. However, foaming capacity (89.66%) of mung bean protein isolate was higher than that of soy protein isolate (68.66%). Besides, least gelation concentration (LGC) of mung bean protein isolate (12%) was also close to LGC of soy protein isolate (14%), while the protein solubility was comparable between both the isolated proteins. The physical features of the textured mung bean were close to the commercial textured soy protein, which showed a heterogeneous and porous network like matrix when the mung bean flour was extruded to measure its potentiality to produce textured vegetable protein.all seaweed extracts. Results showed that extraction parameters had significant effect (p < 0.05) on the antioxidant compounds and antioxidant capacities of seaweed. Sargassum polycystum portrayed the most antioxidant compounds (37.41 ± 0.01 mg GAE/g DW and 4.54 ± 0.02 mg CE/g DW) and capacities (2.00 ± 0.01 μmol TEAC/g DW and 0.84 ± 0.01 μmol TEAC/g DW) amongst four species of seaweed.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  5. Aljumaily MM, Alsaadi MA, Das R, Hamid SBA, Hashim NA, AlOmar MK, et al.
    Sci Rep, 2018 02 09;8(1):2778.
    PMID: 29426860 DOI: 10.1038/s41598-018-21051-3
    Demand is increasing for superhydrophobic materials in many applications, such as membrane distillation, separation and special coating technologies. In this study, we report a chemical vapor deposition (CVD) process to fabricate superhydrophobic carbon nanomaterials (CNM) on nickel (Ni)-doped powder activated carbon (PAC). The reaction temperature, reaction time and H2/C2H2 gas ratio were optimized to achieve the optimum contact angle (CA) and carbon yield (CY). For the highest CY (380%) and CA (177°), the optimal reaction temperatures were 702 °C and 687 °C, respectively. However, both the reaction time (40 min) and gas ratio (1.0) were found to have similar effects on CY and CA. Based on the Field emission scanning electron microscopy and transmission electron microscopy images, the CNM could be categorized into two main groups: a) carbon spheres (CS) free carbon nanofibers (CNFs) and b) CS mixed with CNFs, which were formed at 650 and 750 °C, respectively. Raman spectroscopy and thermogravimetric analysis also support this finding. The hydrophobicity of the CNM, expressed by the CA, follows the trend of CS-mixed CNFs (CA: 177°) > CS-free CNFs (CA: 167°) > PAC/Ni (CA: 65°). This paves the way for future applications of synthesized CNM to fabricate water-repellent industrial-grade technologies.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  6. Hui YW, Narayanan K, Dykes GA
    Water Environ Res, 2016 Nov 01;88(11):2040-2046.
    PMID: 26704787 DOI: 10.2175/106143016X14504669767292
      The effect of physical shearing on the attachment of six Pseudomonas aeruginosa strains and six Burkholderia cepacia strains to glass, stainless steel, polystyrene and Teflon® was determined. A significant (p < 0.05) decrease in hydrophobicity was apparent for all P. aeruginosa strains (17-36%) and B. cepacia, MS 5 (20%) after shearing. A significant (p < 0.05) decrease in attachment of some P. aeruginosa (0.2-0.5 log CFU/cm2) and B. cepacia (0.2-0.4 log CFU/cm2) strains to some surface types was apparent after shearing. Significant (p < 0.05) correlation was observed for both numbers of flagellated cells and hydrophobicity against attachment to glass, stainless steel and polystyrene for P. aeruginosa while only hydrophobicity showed significant correlation against the same surfaces for B. cepacia. Scanning electron microscopy and protein analysis showed that shearing removed surface proteins from the cells and may have led to the observed changes in hydrophobicity and attachment to abiotic surfaces.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  7. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  8. Liew PW, Jong BC, Najimudin N
    Appl Environ Microbiol, 2015 Nov;81(21):7484-95.
    PMID: 26276116 DOI: 10.1128/AEM.02081-15
    A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  9. Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TR, Mallikarjun C
    Indian J Pharm Sci, 2008 May-Jun;70(3):303-9.
    PMID: 20046737 DOI: 10.4103/0250-474X.42978
    The aim of the present work was to investigate the preparation of microspheres as potential drug carriers for proteins, intended for controlled release formulation. The hydrophilic bovine serum albumin was chosen as a model protein to be encapsulated within poly(D,L-lactide-co-glycolide) (50:50) microspheres using a w/o/w double emulsion solvent evaporation method. Different parameters influencing the particle size, entrapment efficiency and in vitro release profiles were investigated. The microspheres prepared with different molecular weight and hydrophilicity of poly(D,L-lactide-co-glycolide) polymers were non porous, smooth surfaced and spherical in structure under scanning electron microscope with a mean particle size ranging from 3.98 to 8.74 mum. The protein loading efficiency varied from 40 to 71% of the theoretical amount incorporated. The in vitro release profile of bovine serum albumin from microspheres presented two phases, initial burst release phase due to the protein adsorbed on the microsphere surface, followed by slower and continuous release phase corresponding to the protein entrapped in polymer matrix. The release rate was fairly constant after an initial burst release. Consequently, these microspheres can be proposed as new controlled release protein delivery system.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  10. Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C
    Int J Biol Macromol, 2024 Nov;281(Pt 1):136223.
    PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223
    Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  11. Ismail A, Illias RM
    J Ind Microbiol Biotechnol, 2017 Dec;44(12):1627-1641.
    PMID: 28921081 DOI: 10.1007/s10295-017-1980-6
    The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions*
  12. Aljumaily MM, Alsaadi MA, Binti Hashim NA, Mjalli FS, Alsalhy QF, Khan AL, et al.
    Biotechnol Prog, 2020 05;36(3):e2963.
    PMID: 31943942 DOI: 10.1002/btpr.2963
    To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions/drug effects
  13. Hui YW, Dykes GA
    J Food Prot, 2012 Aug;75(8):1507-11.
    PMID: 22856578 DOI: 10.4315/0362-028X.JFP-12-062
    The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions/drug effects*
  14. Wu XH, Liew YK, Mai CW, Then YY
    Int J Mol Sci, 2021 Mar 24;22(7).
    PMID: 33805207 DOI: 10.3390/ijms22073341
    Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions*
  15. Bonsu KO, Kadirvelu A, Reidpath DD
    Syst Rev, 2013;2:22.
    PMID: 23618535 DOI: 10.1186/2046-4053-2-22
    Statins are known to reduce cardiovascular morbidity and mortality in primary and secondary prevention studies. Subsequently, a number of nonrandomised studies have shown statins improve clinical outcomes in patients with heart failure (HF). Small randomised controlled trials (RCT) also show improved cardiac function, reduced inflammation and mortality with statins in HF. However, the findings of two large RCTs do not support the evidence provided by previous studies and suggest statins lack beneficial effects in HF. Two meta-analyses have shown statins do not improve survival, whereas two others showed improved cardiac function and reduced inflammation in HF. It appears lipophilic statins produce better survival and other outcome benefits compared to hydrophilic statins. But the two types have not been compared in direct comparison trials in HF.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions*
  16. Pramanik BK, Pramanik SK, Suja F
    Environ Technol, 2016 Aug;37(15):1857-64.
    PMID: 26695189 DOI: 10.1080/09593330.2015.1134677
    The impact of biological activated carbon (BAC), sand filtration (SF) and biological aerated filter (BAF) for removal of the selected organic micropollutants and polyfluoroalkyl substances (PFASs) from secondary effluent was studied. BAC led to greater removal of dissolved organic carbon (43%) than BAF (30%) which in turn was greater than SF (24%). All biological filtration systems could effectively remove most of the selected organic micropollutants, and there was a greater removal of these micropollutants by BAC (76-98%) than BAF (70-92%) or SF (68-90%). It was found that all treatment was effective for removal of the hydrophobic (log D > 3.2) and readily biodegradable organic micropollutants. The major mechanism for the removal of these molecules was biodegradation by the micro-organism and sorption by the biofilm. Compared to organic micropollutants removal, there was a lower removal of PFASs by all treatments, and BAF and SF had a considerably lower removal than BAC treatment. The better removal for all molecule types by BAC was due to additional adsorption capacity by the activated carbon. This study demonstrated that the BAC process was most effective in removing organic micropollutants present in the secondary effluent.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  17. Hamdi OA, Feroz SR, Shilpi JA, Anouar el H, Mukarram AK, Mohamad SB, et al.
    Int J Mol Sci, 2015;16(3):5180-93.
    PMID: 25756376 DOI: 10.3390/ijms16035180
    Curcumenol and curcumenone are two major constituents of the plants of medicinally important genus of Curcuma, and often govern the pharmacological effect of these plant extracts. These two compounds, isolated from C. zedoaria rhizomes were studied for their binding to human serum albumin (HSA) using the fluorescence quench titration method. Molecular docking was also performed to get a more detailed insight into their interaction with HSA at the binding site. Additions of these sesquiterpenes to HSA produced significant fluorescence quenching and blue shifts in the emission spectra of HSA. Analysis of the fluorescence data pointed toward moderate binding affinity between the ligands and HSA, with curcumenone showing a relatively higher binding constant (2.46 × 105 M-1) in comparison to curcumenol (1.97 × 104 M-1). Cluster analyses revealed that site I is the preferred binding site for both molecules with a minimum binding energy of -6.77 kcal·mol-1. However, binding of these two molecules to site II cannot be ruled out as the binding energies were found to be -5.72 and -5.74 kcal·mol-1 for curcumenol and curcumenone, respectively. The interactions of both ligands with HSA involved hydrophobic interactions as well as hydrogen bonding.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  18. Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, et al.
    Carbohydr Polym, 2014 Jan;99:649-65.
    PMID: 24274556 DOI: 10.1016/j.carbpol.2013.08.069
    Nanofibrillated cellulose from biomass has recently gained attention owing to their biodegradable nature, low density, high mechanical properties, economic value and renewability. Although they still suffer from two major drawbacks. The first challenge is the exploration of raw materials and its application in nanocomposites production. Second one is high energy consumption regarding the mechanical fibrillation. However, pretreatments before mechanical isolation can overcome this problem. Hydrophilic nature of nano-size cellulose fibers restricts good dispersion of these materials in hydrophobic polymers and therefore, leads to lower mechanical properties. Surface modification before or after mechanical defibrillation could be a solution for this problem. Additionally, drying affects the size of nanofibers and its properties which needs to study further. This review focuses on recent developments in pretreatments, nanofibrillated cellulose production and its application in nanopaper applications, coating additives, security papers, food packaging, and surface modifications and also for first time its drying.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  19. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  20. Mosapour Kotena Z, Behjatmanesh-Ardakani R, Hashim R, Manickam Achari V
    J Mol Model, 2013 Feb;19(2):589-99.
    PMID: 22972691 DOI: 10.1007/s00894-012-1576-z
    Density functional theory calculations on two glycosides, namely, n-octyl-β-D-glucopyranoside (C(8)O-β-Glc) and n-octyl-β-D-galactopyranoside (C(8)O-β-Gal) were performed for geometry optimization at the B3LYP/6-31G level. Both molecules are stereoisomers (epimers) differing only in the orientation of the hydroxyl group at the C4 position. Thus it is interesting to investigate electronically the effect of the direction (axial/equatorial) of the hydroxyl group at the C4 position. The structure parameters of X-H∙∙∙Y intramolecular hydrogen bonds were analyzed, while the nature of these bonds and the intramolecular interactions were considered using the atoms in molecules (AIM) approach. Natural bond orbital analysis (NBO) was used to determine bond orders, charge and lone pair electrons on each atom and effective non-bonding interactions. We have also reported electronic energy and dipole moment in gas and solution phases. Further, the electronic properties such as the highest occupied molecular orbital, lowest unoccupied molecular orbital, ionization energy, electron affinity, electronic chemical potential, chemical hardness, softness and electrophilicity index, are also presented here for both C(8)O-β-Glc and C(8)O-β-Gal. These results show that, while C(8)O-β-Glc possess- only one hydrogen bond, C(8)O-β-Gal has two intramolecular hydrogen bonds, which further confirms the anomalous stability of the latter in self-assembly phenomena.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links