Displaying publications 121 - 140 of 1877 in total

Abstract:
Sort:
  1. Kuang G, Xu Z, Wang J, Gao Z, Yang W, Wu W, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0512222.
    PMID: 37306586 DOI: 10.1128/spectrum.05122-22
    Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.
    Matched MeSH terms: Phylogeny
  2. Wan Sajiri WMH, Kua BC, Borkhanuddin MH
    J Invertebr Pathol, 2023 Jun;198:107910.
    PMID: 36889458 DOI: 10.1016/j.jip.2023.107910
    Infection by the microsporidian parasite Enterocytozoon hepatopenaei (EHP) has become a significant problem in the shrimp cultivation industry in Asian countries like Thailand, China, India, Vietnam, Indonesia, and Malaysia. The outbreak of this microsporidian parasite is predominantly related to the existence of macrofauna-carriers of EHP. However, information about potential macrofauna-carriers of EHP in rearing ponds is still limited. In this study, the screening of EHP in potential macrofauna-carriers was conducted in farming ponds of Penaeus vannamei in three states in Malaysia, namely Penang, Kedah, and Johor. A total of 82 macrofauna specimens (phyla: Arthropoda, Mollusca, and Chordata) were amplified through a polymerase chain reaction (PCR) assay targeting genes encoding spore wall proteins (SWP) of EHP. The PCR results showed an average prevalence of EHP (82.93%) from three phyla (Arthropoda, Mollusca and Chordata). The phylogenetic tree generated from the macrofauna sequences was revealed to be identical to the EHP-infected shrimp specimens from Malaysia (MW000458, MW000459, and MW000460), as well as those from India (KY674537), Thailand (MG015710), Vietnam (KY593132), and Indonesia (KY593133). These findings suggest that certain macrofauna species in shrimp ponds of P. vannamei are carriers of EHP spores and could be potential transmission vectors. This study provides preliminary information for the prevention of EHP infections that can be initiated at the pond stage by eradicating macrofauna species identified as potential vectors.
    Matched MeSH terms: Phylogeny
  3. Mursyidah AK, Hafizzudin-Fedeli M, Nor Muhammad NA, Latiff A, Firdaus-Raih M, Wan KL
    Plant Cell Physiol, 2023 Apr 17;64(4):368-377.
    PMID: 36611267 DOI: 10.1093/pcp/pcad004
    The angiosperm Rafflesia exhibits a unique biology, including a growth strategy that involves endophytic parasitism of a specific host, with only the gigantic flower externally visible. The Rafflesia possesses many unique evolutionary, developmental and morphological features that are rooted in yet-to-be-explained physiological processes. Although studies on the molecular biology of Rafflesia are limited by sampling difficulties due to its rarity in the wild and the short life span of its flower, current advances in high-throughput sequencing technology have allowed for the genome- and transcriptome-level dissection of the molecular mechanisms behind the unique characteristics of this parasitic plant. In this review, we summarize major findings on the cryptic biology of Rafflesia and provide insights into future research directions. The wealth of data obtained can improve our understanding of Rafflesia species and contribute toward the conservation strategy of this endangered plant.
    Matched MeSH terms: Phylogeny
  4. Tsuyuki A, Oya Y, Jimi N, Hookabe N, Fujimoto S, Kajihara H
    Zoolog Sci, 2023 Jun;40(3):262-272.
    PMID: 37256573 DOI: 10.2108/zs220105
    We establish a new interstitial polyclad species, Theama japonica sp. nov., based on specimens collected from coarse-sandy habitats in three Japanese main islands (Hokkaido, Honshu, and Shikoku) along the coasts of the Pacific Ocean and the Sea of Japan. Theama japonica is characterized by i) two pairs of cerebral eyespots and four to six precerebral eyespots; ii) eosinophilic secretion glands distributed in the distal half of the inner ventral part of the prostatic vesicle; iii) a conical penis papilla, bent up dorsally, with a sclerotized inner wall; iv) the prostatic sheath with an inner angular fold on the dorso-distal side; and v) the external cilia longer dorsally than ventrally. Partial sequences of the cytochrome c oxidase subunit I (COI) gene from 20 specimens collected at eight localities along Japanese coasts represented 19 haplotypes. The uncorrected p-distances among these COI haplotypes fell within intraspecific variations observed in other polyclads. A network analysis based on these COI haplotypes suggested a geographically non-cohesive genetic structure of the species, possibly indicating the species' high dispersibility. Molecular phylogenetic analyses based on a concatenated dataset of 18S and 28S rDNA sequences showed T. japonica formed a clade with other Theama species. The resulting tree also indicates that our new species is more closely related to Theama sp. from Colombia than species from Panama and Croatia.
    Matched MeSH terms: Phylogeny
  5. Javanshir A, Tavassoli M, Esmaeilnejad B
    Parasitol Res, 2023 Aug;122(8):1873-1881.
    PMID: 37272975 DOI: 10.1007/s00436-023-07888-2
    Trypanosoma evansi, the causative agent of "surra" is enzootic in Iran. The current study aimed to detect T. evansi in horses from different regions of Iran using morphological, serological, and molecular methods. In 2021, 400 blood samples were collected from horses in eight regions. Eighty horses showed clinical signs such as cachexia (n = 64), fever (n = 36), foot edema (n = 40), and abdominal edema (n = 32), and 320 horses appeared healthy. All samples from the studied regions were evaluated for the presence of trypanosomes using direct analysis of blood smears, mercuric chloride, and PCR-based tests. In total, 12% (95% CI: ± 3.1%), 21% (95% CI: ± 3.9%), and 21% (84) of animals were positive for Trypanosoma in microscopic, serologic, and molecular analyses, respectively. All animals positive for SSU rDNA PCR were from Qom, Semnan, and Golestan regions. Further molecular analyses on 84 PCR-positive horses revealed that 29 horses scored positive in PCR using primers of trypanozoon species and 5 scored positive in PCR using primers of Trypanosoma evansi type A. All samples (n = 5) were from Qom region. The 205-bp fragments of T. evansi RoTat 1.2VSG (accession numbers: ON017789-93) analyzed and compared to other isolates sequence from GenBank BLAST search. It has close similarities with isolates from Pakistan, Egypt, Malaysia, Kenya, and India. Data herein demonstrated that horses from Iran were at high risk of T. evansi infection. Comprehensive control programs, such as those based on the application of repellants and traps, and also, compliance with quarantine standards are recommended for minimizing the risk of the infection.
    Matched MeSH terms: Phylogeny
  6. Ghazali SZ, Lavoué S, Sukmono T, Habib A, Tan MP, Nor SAM
    Mol Phylogenet Evol, 2023 Sep;186:107832.
    PMID: 37263456 DOI: 10.1016/j.ympev.2023.107832
    We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
    Matched MeSH terms: Phylogeny
  7. Rincón-Flórez VA, Carvalhais LC, Silva AMF, McTaggart A, Ray JD, O'Dwyer C, et al.
    Phytopathology, 2024 Nov;114(11):2375-2384.
    PMID: 39145736 DOI: 10.1094/PHYTO-06-24-0190-R
    Moko disease in banana is a bacterial wilt caused by strains within Ralstonia solanacearum sensu stricto. The disease is endemic to Central and South America but has spread to the Philippines and peninsular Malaysia. Detecting new incursions early in Moko-free banana production regions is of utmost importance for containment and eradication, as Moko management significantly increases costs in banana production. Molecular studies have supported the classification of R. solanacearum sensu stricto into phylotypes IIA, IIB, and IIC, each comprising various sequevars based on nucleotide divergence of a partial sequence within the endoglucanase gene. Moko disease in banana is caused by strains classified as sequevars 6, 24, 41, and 53 within phylotype IIA and sequevars 3, 4, and 25 within phylotype IIB. To ensure accurate diagnostic assays are available to detect all Moko sequevars, we systematically validated previously published assays for Moko diagnostics. To be able to identify all sequevars, including the latest described sequevars, namely IIB-25, IIA-41, and IIA-53, we developed and validated two novel assays using genome-wide association studies on over 100 genomes of R. solanacearum sensu stricto. Validations using 196 bacterial isolates confirmed that a previous multiplex PCR-based assay targeting sequevars IIB-3, IIB-4, IIA-6, and IIA-24 and our two novel assays targeting sequevars IIB-25, IIA-41, and IIA-53 were specific, reproducible, and accurate for Moko diagnostics.
    Matched MeSH terms: Phylogeny
  8. Garg KM, Chattopadhyay B, Cros E, Tomassi S, Benedick S, Edwards DP, et al.
    Mol Biol Evol, 2022 Jan 07;39(1).
    PMID: 34893875 DOI: 10.1093/molbev/msab340
    Island biogeography is one of the most powerful subdisciplines of ecology: its mathematical predictions that island size and distance to mainland determine diversity have withstood the test of time. A key question is whether these predictions follow at a population-genomic level. Using rigorous ancient-DNA protocols, we retrieved approximately 1,000 genomic markers from approximately 100 historic specimens of two Southeast Asian songbird complexes from across the Sunda Shelf archipelago collected 1893-1957. We show that the genetic affinities of populations on small shelf islands defy the predictions of geographic distance and appear governed by Earth-historic factors including the position of terrestrial barriers (paleo-rivers) and persistence of corridors (Quaternary land bridges). Our analyses suggest that classic island-biogeographic predictors may not hold well for population-genomic dynamics on the thousands of shelf islands across the globe, which are exposed to dynamic changes in land distribution during Quaternary climate change.
    Matched MeSH terms: Phylogeny
  9. Jimi N, Shinji J, Hookabe N, Okanishi M, Woo SP, Nakano T
    Zoolog Sci, 2023 Aug;40(4):308-313.
    PMID: 37522602 DOI: 10.2108/zs220057
    A new fish leech, Branchellion brevicaudatae sp. n., is described based on specimens parasitizing the gills of the short-tail stingray, Bathytoshia brevicaudata (Hutton, 1875), collected from Japanese waters. The new species can be distinguished from other congeners by having: i) pulsating vesicles emerging from posterior base of branchiae, one pair per somite; ii) dorsal white spots, not arranged in longitudinal row; and iii) blackish body. A phylogenetic tree based on partial sequences of the mitochondrial cytochrome c oxidase subunit I gene from the new species and other piscicolid worms showed that the new species is sister to Branchellion torpedinis Savigny, 1822. This is the first record of Branchellion Savigny, 1822 from Japanese waters.
    Matched MeSH terms: Phylogeny
  10. M M, Azmi MA, Sani NI, Gilbert G, Reduan MHF
    Trop Biomed, 2023 Jun 01;40(2):194-198.
    PMID: 37650407 DOI: 10.47665/tb.40.2.011
    We have previously isolated a novel avian Orthobunyavirus, Kedah Fatal Kidney Syndrome (KFKS) virus from a broiler farm in Kedah, Malaysia in 2020 with a severe kidney lesion in chickens. The virus was designated as KFKS2_CS virus. Sequence analysis of partial nucleocapsid (N) and nonstructural (NSs) sequence of this virus showed the highest sequence identity with previous KFKS1 from Malaysia (100%) and 97% with a zoonotic Umbre (UMB) virus, which was reported to cause encephalitis in immunocompromised humans in India. Phylogenetic analysis revealed that this virus was clustered together with previous KFKS1 virus from Malaysia, UMB and Cristoli viruses. This study aimed to assess the zoonotic potential of this KFKS2_CS virus in vitro by determining its ability to inhibit the production of interferon (IFN) in human glioblastoma multiforme (GBM) brain cells using reverse-transcriptase polymerase reaction (RT-PCR). This virus blocked the production of interferon-a in this human brain cells. In conclusion, this KFKS2_CS virus may have a zoonotic potential and become a public health concern in the future.
    Matched MeSH terms: Phylogeny
  11. Selvavinayagam ST, Yong YK, Joseph N, Hemashree K, Tan HY, Zhang Y, et al.
    Front Public Health, 2022;10:1018399.
    PMID: 36211690 DOI: 10.3389/fpubh.2022.1018399
    The rapid spread of SARS-CoV-2 variants in the global population is indicative of the development of selective advantages in emerging virus strains. Here, we performed a case-control investigation of the clinical and demographic characteristics, clinical history, and virological markers to predict disease progression in hospitalized adults for COVID-19 between December 2021 and January 2022 in Chennai, India. COVID-19 diagnosis was made by a commercial TaqPath COVID-19 RT-PCR, and WGS was performed with the Ion Torrent Next Generation Sequencing System. High-quality (<5% of N) complete sequences of 73 Omicron B.1.1.529 variants were randomly selected for phylogenetic analysis. SARS-CoV-2 viral load, number of comorbidities, and severe disease presentation were independently associated with a shorter time-to-death. Strikingly, this was observed among individuals infected with Omicron BA.2 but not among those with the BA.1.1.529, BA.1.1, or the Delta B.1.617.2 variants. Phylogenetic analysis revealed severe cases predominantly clustering under the BA.2 lineage. Sequence analyses showed 30 mutation sites in BA.1.1.529 and 33 in BA.1.1. The mutations unique to BA.2 were T19I, L24S, P25del, P26del, A27S, V213G, T376A, D405N and R408S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and the Omicron BA.1.1.529 variant but not with Omicron BA.1.1 or BA.2 suggests that the newer strains are largely immune escape variants. The number of vaccine doses received was independently associated with increased odds of developing asymptomatic disease or recovery. We propose that the novel mutations reported herein could likely bear a significant impact on the clinical characteristics, disease progression, and epidemiological aspects of COVID-19. Surging rates of mutations and the emergence of eclectic variants of SARS-CoV-2 appear to impact disease dynamics.
    Matched MeSH terms: Phylogeny
  12. Yap FC, Wong WL, Chong VC, Bong CW, Lim LS
    Arthropod Struct Dev, 2023 Sep;76:101298.
    PMID: 37672818 DOI: 10.1016/j.asd.2023.101298
    The advancements in microscopic techniques have stimulated great interest in the muscular and neural architectures of invertebrates, specifically using muscle and neural structures to infer phylogenetic relationships. Here, we provide the data on the development of the muscular and nervous systems during the larval development of stalked barnacle, Octolasmis angulata using the phalloidin F-actin and immunohistochemical labelling (e.g. acetylated α-tubulin and serotonin) and confocal laser scanning microscopy analysis. All naupliar stages shared the same muscle and neural architectures with only the discrepancy in size. The nauplii have a complex muscle arrangement in their feeding apparatus and naupliar appendages. Most naupliar muscles undergo histolyse during the cyprid metamorphosis. The cyprid muscles form beneath the head shield at the end of nauplius VI. The naupliar and cyprid central nervous systems exhibit the typical tripartite brain comprising the protocerebrum, deutocerebrum and tritocerebrum. The serotonin-like immunoreactivity is mainly found in the naupliar brain, mandibular ganglia, cyprid brain and posterior ganglia. Our study revealed that numerous muscle and neural architectures in the naupliar and cyprids have phylogenetic significance, but future studies on the myoanatomy and neuroanatomy of other barnacle species are necessary to determine the homology of these structures.
    Matched MeSH terms: Phylogeny
  13. Zhang G, Gao JJ, Takano KT, Yafuso M, Suwito A, Meleng PA, et al.
    Zootaxa, 2023 May 05;5278(2):201-238.
    PMID: 37518286 DOI: 10.11646/zootaxa.5278.2.1
    The zeylanica group is one of the six species groups of the anthophilic genus Colocasiomyia de Meijere in the family Drosophilidae. In addition to two known species, five morphospecies have been recognized as members of this species group but left undescribed formally. In this study, species delimitation of these putatively new species was determined by barcoding of the mitochondrial COI (cytochrome c oxydase subunit I) gene and morphological comparison. Phylogenetic relationships within the genus Colocasiomyia were inferred by a cladistic analysis of 89 morphological characters. Based on the results of these analyses, we redefined the zeylanica species group and established two subgroups within it: the zeylanica subgroup comprised of C. zeylanica, C. nepalensis, C. pinangae sp. nov., C. besaris sp. nov. and C. luciphila sp. nov., and the oligochaeta subgroup of C. oligochaeta sp. nov. and C. grimaldii sp. nov. In addition, we briefly address the anthophilic habits of drosophilid flies using palm (Arecaceae) inflorescences, especially of the zeylanica group, compiling scattered collection records from the Oriental and Papuan regions.
    Matched MeSH terms: Phylogeny
  14. Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, et al.
    Nat Ecol Evol, 2023 Nov;7(11):1914-1929.
    PMID: 37652999 DOI: 10.1038/s41559-023-02185-8
    The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
    Matched MeSH terms: Phylogeny
  15. Veryard R, Wu J, O'Brien MJ, Anthony R, Both S, Burslem DFRP, et al.
    Sci Adv, 2023 Sep 15;9(37):eadf0938.
    PMID: 37713486 DOI: 10.1126/sciadv.adf0938
    Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-scale tropical restoration experiment initiated in 2002 to test how the diversity of planted trees affected recovery of a 500-ha area of selectively logged forest measured using multiple sources of satellite data. Replanting using species-rich mixtures of tree seedlings with higher phylogenetic and functional diversity accelerated restoration of remotely sensed estimates of aboveground biomass, canopy cover, and leaf area index. Our results are consistent with a positive relationship between biodiversity and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and demonstrate that using diverse mixtures of species can enhance their initial recovery after logging.
    Matched MeSH terms: Phylogeny
  16. Wang S, Su M, Hu X, Wang X, Han Q, Yu Q, et al.
    FEMS Microbiol Lett, 2024 Jan 09;371.
    PMID: 38124623 DOI: 10.1093/femsle/fnad135
    Invertebrates such as termites feeding on nutrient-poor substrate receive essential nitrogen by biological nitrogen fixation of gut diazotrophs. However, the diversity and composition of gut diazotrophs of vertebrates such as Plateau pikas living in nutrient-poor Qinghai-Tibet Plateau remain unknown. To fill this knowledge gap, we studied gut diazotrophs of Plateau pikas (Ochotona curzoniae) and its related species, Daurian pikas (Ochotona daurica), Hares (Lepus europaeus) and Rabbits (Oryctolagus cuniculus) by high-throughput amplicon sequencing methods. We analyzed whether the gut diazotrophs of Plateau pikas are affected by season, altitude, and species, and explored the relationship between gut diazotrophs and whole gut microbiomes. Our study showed that Firmicutes, Spirochaetes, and Euryarchaeota were the dominant gut diazotrophs of Plateau pikas. The beta diversity of gut diazotrophs of Plateau pikas was significantly different from the other three lagomorphs, but the alpha diversity did not show a significant difference among the four lagomorphs. The gut diazotrophs of Plateau pikas were the most similarly to that of Rabbits, followed by Daurian pikas and Hares, which was inconsistent with gut microbiomes or animal phylogeny. The dominant gut diazotrophs of the four lagomorphs may reflect their living environment and dietary habits. Season significantly affected the alpha diversity and abundance of dominant gut diazotrophs. Altitude had no significant effect on the gut diazotrophs of Plateau pikas. In addition, the congruence between gut microbiomes and gut diazotrophs was low. Our results proved that the gut of Plateau pikas was rich in gut diazotrophs, which is of great significance for the study of ecology and evolution of lagomorphs.
    Matched MeSH terms: Phylogeny
  17. Broyles GG, Myers BM, Friedman NR, Gawin DF, Mohd-Taib FS, Sahlan PGM, et al.
    Evolution, 2023 Dec 02;77(12):2656-2671.
    PMID: 37801637 DOI: 10.1093/evolut/qpad179
    The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern.
    Matched MeSH terms: Phylogeny
  18. Mohd-Azami SNI, Loong SK, Khoo JJ, Sahimin N, Lim FS, Husin NA, et al.
    J Vet Med Sci, 2022 Jul 01;84(7):938-941.
    PMID: 35584942 DOI: 10.1292/jvms.22-0037
    Rat bocavirus (RBoV) and rodent bocavirus (RoBoV) have previously been detected in Rattus norvegicus; however, these viruses have not been reported in rodent populations in Malaysia. We investigated the presence of RBoV and RoBoV in archived rodent specimens. DNA barcoding of the rodent cytochrome c oxidase gene identified five different species: Rattus tanezumi R3 mitotype, Rattus tiomanicus, Rattus exulans, Rattus argentiventer, and Rattus tanezumi sensu stricto. Three spleens were positive for RBoV (1.84%; 3/163), but no RoBoV was detected. Phylogenetic analyzes of the partial non-structural protein 1 gene grouped Malaysian RBoV strains with RBoV strains from China. Further studies among rats from different geographical locations are warranted for this relatively new virus.
    Matched MeSH terms: Phylogeny
  19. Hew YX, Ya'cob Z, Chen CD, Lau KW, Sofian-Azirun M, Muhammad-Rasul AH, et al.
    Acta Trop, 2024 Feb;250:107097.
    PMID: 38097150 DOI: 10.1016/j.actatropica.2023.107097
    Mitochondrial cytochrome c oxidase subunit I (COI) sequences were utilized to infer the population genetic structure of Simulium (Gomphostilbia) atratum De Meijere, an endemic simulid species to Indonesia. Both median-joining haplotype network and maximum-likelihood tree revealed two genetic lineages (A and B) within the species, with an overlap distribution in Lombok, which is situated along Wallace's line. Genetic differentiation and gene flow with varying frequencies (FST = 0.02-0.967; Nm = 0.01-10.58) were observed between populations of S. (G.) atratum, of which population pairs of different lineages showed high genetic differentiation. Notably, the high genetic distance of up to 5.92 % observed within S. (G.) atratum in Lombok was attributed to the existence of two genetically distinct lineages. The co-occurrence of distinct lineages in Lombok indicated that Wallace's line did not act as faunistic border for S. (G.) atratum in the present study. Moreover, both lineages also exhibited unimodal distributions and negative values of neutrality tests, suggesting a pattern of population expansion. The expansion and divergence time estimation suggested that the two lineages of S. (G.) atratum diverged and expanded during the Pleistocene era in Indonesia.
    Matched MeSH terms: Phylogeny
  20. Grismer LL, Pawangkhanant P, Idiiatullina SS, Trofimets AV, Nazarov RA, Suwannapoom C, et al.
    Zootaxa, 2023 Oct 02;5352(1):109-136.
    PMID: 38221458 DOI: 10.11646/zootaxa.5352.1.4
    An integrative taxonomic analysis recovers a distinctive new species of the gekkonid genus Cyrtodactylus Gray, 1827 from Satun Province in extreme southern Thailand as the sister species to the Cyrtodactylus intermedius group of southern Indochina, approximately 600 km to the northeast across the Gulf of Thailand. Based on 1449 base pairs of the mitochondrial gene NADH dehydrogenase subunit 2 (ND2) and its flanking tRNAs, the new species, C. disjunctus sp. nov., bears a pairwise sequence divergence from the mean divergences of the intermedius group species ranging from 17.923.6%. Three different principal component analyses (PCA) and a multiple factor analysis (MFA) recover C. disjunctus sp. nov. as a highly distinctive karst cave-adapted species based on morphology and color pattern. Its sister species relationship to the intermedius groupto which it is added herefurther underscores a growing body of analyses that have recovered a trans-Gulf of Thailand connection across the submerged Sunda Shelf between the southern Thai-Malay Peninsula and southern Indochina. Fragmented karstic archipelagos stretching across Indochina have served as foci for the independent evolution of nearly 25% of the species of Cyrtodactylus. The description of C. disjunctus sp. nov. continues to highlight the fact that karstic habitats support an ever-increasing number of threatened site-specific endemics that compose much of the reptile diversity of many Asian nations but, as of yet, most of these landscapes have no legal protection.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links