Antibody-mediated rejection (AMR) still persists as the major hurdle towards successful renal allograft survival. This paper aims to report on the HLA antibody landscape of renal transplant candidates in Malaysia. A total of 2,219 adult samples from 2016 to 2019 were analysed for anti-HLA antibodies using solid-phase assay. Our findings highlight the prevalence and risk factors for antibodies against HLA antigens in renal transplant settings, which could be beneficial for selecting compatible recipients from deceased organ donors. To the best of our knowledge, this study is the first to demonstrate that ethnic Malay and Chinese showed significantly higher prevalence of anti-HLA antibodies. Based on our multivariate analysis: (i) female gender was associated with higher risk for panel reactive antibodies (PRAs) against Class I, Class II, and Class I and II (p
Hepato- and nephrotoxicity of Khat consumption (Catha edulis Forskal) have been evoked. Therefore, this study was conducted to evaluate such possible hepatorenal toxicity in female and male Sprague-Dawley rats (SD rats) focusing primarily on liver and kidney. In addition, female and male rats were investigated separately. Accordingly, forty-eight SD-rats (100-120 g) were distributed randomly into four groups of males and female (n = 12). Normal controls (NCs) received distilled water, whereas test groups received 500 mg/kg (low dose (LD)), 1000 mg/kg (medium dose (MD)), or 2000 mg/kg (high dose (HD)) of crude extract of Catha edulis orally for 4 weeks. Then, physical, biochemical, hematological, and histological parameters were analyzed. Results in Khat-fed rats showed hepatic enlargement, abnormal findings in serum aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of male and female SD-rats and serum albumin (A) and serum creatinine (Cr) of female as compared to controls. In addition, histopathological abnormalities confirmed hepatic and renal toxicities of Khat that were related to heavy Khat consumption. In summary, Khat could be associated with hepatic hypertrophy and hepatotoxicity in male and female SD-rats and nephrotoxicity only in female SD-rats.
The aim of the present work was to investigate the preparation of microspheres as potential drug carriers for proteins, intended for controlled release formulation. The hydrophilic bovine serum albumin was chosen as a model protein to be encapsulated within poly(D,L-lactide-co-glycolide) (50:50) microspheres using a w/o/w double emulsion solvent evaporation method. Different parameters influencing the particle size, entrapment efficiency and in vitro release profiles were investigated. The microspheres prepared with different molecular weight and hydrophilicity of poly(D,L-lactide-co-glycolide) polymers were non porous, smooth surfaced and spherical in structure under scanning electron microscope with a mean particle size ranging from 3.98 to 8.74 mum. The protein loading efficiency varied from 40 to 71% of the theoretical amount incorporated. The in vitro release profile of bovine serum albumin from microspheres presented two phases, initial burst release phase due to the protein adsorbed on the microsphere surface, followed by slower and continuous release phase corresponding to the protein entrapped in polymer matrix. The release rate was fairly constant after an initial burst release. Consequently, these microspheres can be proposed as new controlled release protein delivery system.
In this study, an electrochemical sensor was fabricated based on gold nanoparticles/ ethylenediamine/ multi-wall carbon-nanotubes modified gold electrode (AuNPs/en/MWCNTs/AuE) for determination of valrubicin in biological samples. Valrubicin was effectively accumulated on the surface of AuNPs/en/MWCNTs/AuE and produced a pair of redox peaks at around 0.662 and 0.578V (vs. Ag/AgCl) in citrate buffer (pH4.0). The electrochemical parameters including pH, buffer, ionic strength, scan rate and size of AuNPs have been optimized. There was a good linear correlation between cathodic peak current and concentration of valrubicin in the range of 0.5 to 80.0μmolL(-1) with the detection limit of 0.018μmolL(-1) in citrate buffer (pH4.0) and 0.1molL(-1) KCl. Finally, the constructed sensor was successfully applied for determination of valrubicin in human urine and blood serum. In further studies, the different sequences of single stranded DNA probes have been immobilized on the surface of AuNPs decorated on MWCNTs to study the interaction of oligonucleotides with valrubicin.
Chronic kidney disease is an emerging problem in the majority Muslim countries. Despite the uncertainties of the risks involved, some Muslim patients undergoing chronic haemodialysis choose to observe intermittent fasting during the month of Ramadan. This study aims to investigate the effect of Ramadan fasting in haemodialysis patients residing in a tropical climate country.
We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p<0.01). Arsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb≤44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs≤5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms.
Chiral enantiomers [Cu(phen)(L-threo)(H2O)]NO3 1 and [Cu(phen)(D-threo)(H2O)]NO3 2 (threo = threoninate) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(II) complexes, viz. L- and D-[Cu(phen)(5MeOCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; 5MeOCA = 5-methyloxazolidine-4-carboxylate; x = 0-3) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-Visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. Analysis of restriction enzyme inhibition by these four complexes revealed modulation of DNA binding selectivity by the type of ligand, ligand modification and chirality. Their interaction with bovine serum albumin was investigated by FL and electronic spectroscopy. With the aid of the crystal structure of BSA, spectroscopic evidence suggested their binding at the cavity containing Trp134 with numerous Tyr residues in subdomain IA. The products were more antiproliferative than cisplatin against cancer cell lines HK-1, MCF-7, HCT116, HSC-2 and C666-1 except HL-60, and were selective towards nasopharyngeal cancer HK-1 cells over normal NP69 cells of the same organ type.
This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.
This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise β-tri-calcium phosphate (β-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).
Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.
To evaluate the effect of autologous human serum (AHS) versus pooled human serum (PHS) versus foetal bovine serum (FBS) for growth of articular chondrocytes and formation of chondrocytefibrin constructs.
In this study, the hypothesis was tested that behaviour of rats under the open field test condition and effects of subsequent acute stress relate to conformational properties of the main plasma carrier protein, albumin.To evaluate albumin properties, fluorescence intensity of a molecular probe CAPIDAN (N-carboxyphenylimide of dimethylaminonaphthalic acid) at N (at pH 7.4) and F (at pH 4.2) albumin conformations was measured and the N-F signal ratio was calculated. The data obtained showed that CAPIDAN fluoresces selectively from albumin in rat serum and its fluorescence is sensitive to binding of fatty acids and some other ligands to albumin. Behaviour of 78 Wistar male rats was characterized from the fraction of time taken for exploratory and ambulatory activity during the open field test. In rats not subjected to stress (n = 40), a negative correlation was revealed between open field activity and CAPIDAN N-to-F ratio for albumin (r = - 0.55, p < 0.0005). In the group of rats subjected to acute stress (immobilization plus stochastic electrocutaneous stimulation) the correlation between behavioural activity and the albumin conformational properties was significantly positive (r = 0.59, p < 0.0001): the CAPIDAN albumin fluorescence ratio increased in the highly active rats and decreased in the low-activity rats. The mechanisms of the observed effects may involve differences in nonesterified fatty acid production during stress.
We successfully developed an in-house, competitive enzyme immunoassay to measure advanced glycosylation end-products (AGE) in serum. The assay involved coating microtitre wells with AGE-BSA at 8 micrograms/ml for 4 hours, followed by overnight incubation of 20 microliters sample (prediluted at 1:6) with 80 microliters antiserum (1:8000). HRP-labelled goat anti-rabbit was used as the second antibody and 3,5',5,5'-tetramethylbenzidine dihydrochloride as the substrate. Incubation was carried out at 4 degrees C. As suggested in an earlier study, we standardised the AGE units against normal human serum (NHS). Thus, one AGE unit was defined as the inhibition that resulted when the 1:6 diluted NHS was assayed. Mean (+/- SD) AGE level in normal subjects (n = 37) was significantly lower than in diabetes subjects with microalbuminuria (n = 57) (6.0 +/- 0.7 versus 10.2 +/- 4.7 units/ml, p = 0.0001). With the availability of in-house assay and by standardising the AGE unit with the other laboratories, more studies could be undertaken and results compared, and possibly, further elucidate the roles of AGE in the pathogenesis of diabetic complications.
Undernutrition and the consumption of poor diets are prevalent among elderly people in developing countries. Recognising the importance of the early identification of individuals at high nutritional risk, this study aimed to develop a simple tool for screening. A cross-sectional study was conducted on 11 randomly selected villages among the 62 in Mersing District, Malaysia. Undernutrition was assessed using body mass index, plasma albumin and haemoglobin on 285 subjects. Dietary inadequacy (a count of nutrients falling below two-thirds of the Recommended Dietary Allowances) was examined for 337 subjects. Logistic regression analysis was performed to identify significant predictors of undernutrition and dietary inadequacy from social and health factors, and to derive appropriate indices based on these predictions. The multivariate predictors of undernutrition were 'no joint disease', 'smoker', 'no hypertension', 'depended on others for economic resource', 'respiratory disease', 'perceived weight loss' and 'chewing difficulty', with a joint sensitivity of 56% and specificity of 84%. The equivalent predictors of dietary inadequacy were 'unable to take public transport', 'loss of appetite', 'chewing difficulty', 'no regular fruit intake' and 'regularly taking less than three meals per day', with a joint sensitivity of 77% and specificity of 47%. These predictions, with minor modification to simplify operational use, led to the production of a simple screening tool. The tool can be used by public health professionals or community workers or leaders as a simple and rapid instrument to screen individual at high risk of undernutrition and/or dietary inadequacy.
This study aimed to determine the role of surfactant protein A (SP-A) in the formation of stable microbubble in tracheal aspirates. Our results showed that as the concentration of anti SP-A antibodies added to tracheal aspirate specimens increased, the number of stable microbubble formed in the specimen decreased. The correlation between stable microbubble counts and the SP-A levels in the tracheal aspirates was good, r = 0.85, p < 0.05. This study suggests that SP-A plays an important role in stable microbubble formation. Measurement of small stable microbubbles is thus a useful bedside test for predicting the SP-A activity in the tracheal aspirates and in indirect measurement of lung maturity.
This study was undertaken to see if liver function tests (LFT) served a worthwhile purpose in the investigation of hepatocellular carcinoma (HCC). Sera from 80 HCC, 76 benign liver disease (BLD) and 152 healthy adult (HA) subjects were assayed for alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase and lactate dehydrogenase, bilirubin and albumin. Cut-off values were determined from the HA. ALP, GGT, AST and albumin were abnormal in about 90% of the HCC. With the exception of bilirubin, the LFT were abnormal more frequently in HCC than in chronic hepatitis and cirrhosis, the conditions which preceed it. Raised ALP in the presence of normal bilirubin was more often a feature of HCC than BLD although this relationship was not statistically significant. It seems unlikely that LFT serve a useful function in HCC.
Two forms of abnormal fibrillary protein deposition are considered: amyloidosis and fibrillary (immunotactoid) glomerulonephritis. Amyloid is characterised by an antiparallel, beta-pleated configuration which imparts to it a unique apple-green birefringence after Congo red staining. Inspite of its fairly constant physical properties, the chemical composition of amyloid fibrils is amazingly diverse, encomposing AA protein, light chain fragments, transthyretin, procalcitonin, islet amyloid polypeptide, atrial natriuretic peptides, beta-amyloid protein, beta-2-microglobulin, cystatin C, gelsolin, apolipoprotein A1, lyzozyme and their mutant variants. Amyloid P component and heparan sulphate proteoglycan are ubiquitous non-fibrillary amyloid components which have significant roles in the amyloidogenetic process, as do also precursor fibril proteins. Different amyloid fibril proteins relate to different amyloidosis syndromes and different histological patterns, and provide the basis for new diagnostic approaches to this disorder. Glomerular deposits in fibrillary glomerulonephritis (FGN), although often mistaken for amyloid, differ from it in its negative Congophilia, wider fibril width and highly organised, microtubular-tactoidal appearance ultrastructurally. FGN is essentially a primary glomerulopathy resulting in progressive renal failure. Despite certain differences, intriguing similarities between both entities of fibrillary deposition pose a challenge to researchers as to the mechanisms of abnormal protein crystallization and fibril formation in tissues.
Matched MeSH terms: Serum Amyloid A Protein/chemistry
Congo red screening of tissue blocks from 37 consecutive autopsies on leprosy patients revealed 7 cases of systemic amyloidosis, indicating a prevalence rate of 19%. 5 were males and 2 females. All were ethnic Chinese. Their ages ranged from 52 to 85 years with a mean of 69 years. Six had lepromatous leprosy while the remaining 1 had tuberculoid leprosy. In all 7 cases, the amyloid was AA in type, being permanganate-sensitive and immunoreactive with anti-human AA protein antiserum. Hepatic deposition was limited to blood vessels, a pattern typical of AA (secondary) amyloidosis. With regard to renal involvement, 4 showed a predominantly vascular pattern of infiltration while 3 exhibited the more ominous glomerular pattern. Three died of chronic renal failure and 2 of congestive cardiac failure attributable to renal and cardiac amyloidosis respectively. One patient succumbed to septicaemia and the remaining 1 to acute myocardial infarction. AA amyloidosis remains a serious and significant complication of leprosy among Malaysians.
Matched MeSH terms: Serum Amyloid A Protein/analysis