Displaying publications 121 - 140 of 392 in total

Abstract:
Sort:
  1. Balasubramaniam VR, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S
    PLoS One, 2013;8(9):e72429.
    PMID: 24073193 DOI: 10.1371/journal.pone.0072429
    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
    Matched MeSH terms: Swine
  2. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Swine
  3. Tan CY, Opaskornkul K, Thanawongnuwech R, Arshad SS, Hassan L, Ooi PT
    PLoS One, 2020;15(7):e0235832.
    PMID: 32706778 DOI: 10.1371/journal.pone.0235832
    Porcine circovirus type 3 (PCV3) is a newly emerging virus in the swine industry, first reported recently in 2016. PCV3 assembles into a 2000 bp circular genome; slightly larger than PCV1 (1758-1760 bp), PCV2 (1766-1769 bp) and PCV4 (1770 bp). Apart from being associated with porcine dermatitis and nephropathy syndrome (PDNS), PCV3 has been isolated from pigs with clinical signs of reproductive failures, myocarditis, porcine respiratory disease complex (PRDC) and neurologic disease. Given that PCV3 is increasingly reported in countries including Thailand and U.S. with whom Malaysia shares trade and geographical relationship; and that PCV3 is associated with several clinical presentations that affect productivity, there is a need to study the presence and molecular characteristics of PCV3 in Malaysian swine farms. Twenty-four commercial swine farms, three abattoirs and retail shops in Peninsular Malaysia were sampled using convenience sampling method. A total of 281 samples from 141 pigs, including 49 lung archive samples were tested for PCV3 by conventional PCR. Twenty-eight lung samples from wild boar population in Peninsular Malaysia were also included. Nucleotide sequences were analyzed for maximum likelihood phylogeny relationship and pairwise distances. Results revealed that PCV3 is present in Peninsular Malaysia at a molecular prevalence of 17.02%, with inguinal lymph nodes and lungs showing the highest molecular detection rates of 81.82% and 71.43% respectively. Despite wide reports of PCV3 in healthy animals and wild boars, no positive samples were detected in clinically healthy finishers and wild boar population of this study. PCV3 strain A1 and A2 were present in Malaysia, and Malaysian PCV3 strains were found to be phylogenetically related to Spanish, U.S. and Mexico strains.
    Matched MeSH terms: Swine/virology*; Swine Diseases/virology*
  4. Borkenhagen LK, Mallinson KA, Tsao RW, Ha SJ, Lim WH, Toh TH, et al.
    PLoS One, 2018;13(7):e0201295.
    PMID: 30052648 DOI: 10.1371/journal.pone.0201295
    BACKGROUND: The large livestock operations and dense human population of Southeast Asia are considered a hot-spot for emerging viruses.

    OBJECTIVES: To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways.

    STUDY: This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses.

    RESULTS: In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV.

    CONCLUSIONS: This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection.

    Matched MeSH terms: Swine/virology*; Swine Diseases/virology*
  5. Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M
    PLoS One, 2021;16(10):e0258445.
    PMID: 34695136 DOI: 10.1371/journal.pone.0258445
    The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
    Matched MeSH terms: Swine
  6. Li W, Ren Q, Feng J, Lee SY, Liu Y
    PLoS One, 2024;19(1):e0297164.
    PMID: 38241246 DOI: 10.1371/journal.pone.0297164
    Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.
    Matched MeSH terms: Swine/genetics
  7. Suresh Y, Azil AH, Abdullah SR
    PLoS One, 2024;19(1):e0295961.
    PMID: 38252615 DOI: 10.1371/journal.pone.0295961
    In some laboratories, mosquitoes' direct blood-feeding on live animals has been replaced with various membrane blood-feeding systems. The selection of blood meal sources used in membrane feeding is crucial in vector mass rearing as it influences the mosquitoes' development and reproductive fitness. Therefore, this scoping review aimed to evaluate the existing literature on the use of different blood sources and components in artificial membrane feeding systems and their effects on blood-feeding and the fecundity rate of Ae. aegypti. A literature review search was conducted by using PubMed, Scopus, and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR). The EndNote version 20 software was used to import all searched articles. Relevant information was retrieved for analysis into a Microsoft Excel Spreadsheet. A total of 104 full-text articles were assessed for eligibility criteria, whereby the articles should include the comparison between different types of blood source by using the membrane feeding systems. Only 16 articles were finally included in the analysis. Several studies had reported that human blood was superior in blood-feeding Ae. aegypti as compared to sheep blood which resulted in lower fecundity due to accumulation of free fatty acids (FFA) in the cuticles. In contrast, cattle whole blood and pig whole blood showed no significant differences in the blood-feeding and fecundity rate as compared to human blood. This review also indicated that bovine whole blood and pig whole blood enhanced Ae. aegypti's vitellogenesis and egg production as compared to plasma and blood cells. In addition, human blood of up to 10 days after the expiration date could still be used to establish Ae. aegypti colonies with good blood-feeding rates and number of eggs produced. Thus, future studies must consider the importance of selecting suitable blood sources and components for membrane blood feeding especially in mosquito colonisation and control measure studies.
    Matched MeSH terms: Swine
  8. Macdonald AA, Bosma AA
    Placenta, 1985 1 1;6(1):83-91.
    PMID: 3991477
    We examined the gross and microscopic anatomy of placental tissues and umbilical cords from six species representing the three living families of the Suina. These species included, of the Suidae, the wart hog (Phacochoerus aethiopicus), the giant forest hog (Hylochoerus meinertzhageni), the domestic pig (Sus scrofa), and the banded pig of Malaysia (Sus scrofa vittatus); of the Tayassuidae, the white-lipped peccary (Tayassu pecari); of the Hippopotamidae, the hippopotamus (Hippopotamus amphibius) and the pigmy hippopotamus (Choeropsis liberiensis). All these species have a diffuse epitheliochorial placenta. The chorion is folded, and has on its surface rows of shallow ripples or villi, interrupted by round, oval or irregularly shaped areolae. Placental capillaries indent the epithelial layer covering the tops and sides of the interareolar villi, but not the columnar cell layer lying in the troughs between these villi or covering the areolae. Cuboidal cells cover the crests of the villi in the Suidae and Hippopotamidae, whereas in the Tayassuidae the epithelium is syncytial in appearance. The similarities in placental structure between the six species are more apparent than the differences. Suidae and Tayassuidae have smooth umbilical cords containing two arteries and one vein; those of the Hippopotamidae are pustule-encrusted and contain two arteries and two veins.
    Matched MeSH terms: Swine*
  9. Noor NM, Abdul-Aziz A, Sheikh K, Somavarapu S, Taylor KMG
    Pharmaceutics, 2020 Oct 20;12(10).
    PMID: 33092119 DOI: 10.3390/pharmaceutics12100994
    Dutasteride, licensed as an oral medicine for the treatment of benign prostatic hypoplasia, has been investigated as a treatment for androgenic alopecia. In this study, the potential for dustasteride to be delivered topically in order to reduce systemic exposure, irritation of the skin, and also cytotoxicity was explored. Chitosan oligomer (CSO) was successfully synthesised with lauric acid as a coating for a dutasteride-loaded nanostructured lipid carriers (DST-NLCs) system. DST-NLCs were prepared using a combination of melt-dispersion and ultrasonication. These negatively charged NLCs (-18.0 mV) had a mean particle size of ~184 nm, which was not significantly increased (p > 0.05) when coated with lauric acid-chitosan oligomer (CSO-LA), whilst the surface charge changed to positive (+24.8 mV). The entrapment efficiency of DST-NLCs was 97%, and coated and uncoated preparations were physically stable for up to 180 days at 4-8 °C. The drug release was slower from DST-NLCs coated with CSO-LA than from uncoated NLCs, with no detectable drug permeation through full-thickness pig ear skin from either preparation. Considering the cytotoxicity, the IC50 values for the DST-NLCs, coated and uncoated with CSO-LA were greater than for dutasteride alone (p < 0.05). DST-NLCs and empty NLCs coated with CSO-LA at 25 µM increased the cell proliferation compared to the control, and no skin irritation was observed when the DST-NLC formulations were tested using EpiDerm™. The cell and skin uptake studies of coated and uncoated NLCs incorporating the fluorescent marker Coumarin-6 showed the time-dependent uptake of Coumarin-6. Overall, the findings suggest that DST-NLCs coated with CSO-LA represent a promising formulation strategy for dutasteride delivery for the treatment of androgenic alopecia, with a reduced cytotoxicity compared to that of the drug alone and lower irritancy than an ethanolic solution of dutasteride.
    Matched MeSH terms: Swine
  10. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
    Matched MeSH terms: Swine
  11. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S
    Pharm Dev Technol, 2013 May-Jun;18(3):591-9.
    PMID: 22149945 DOI: 10.3109/10837450.2011.640688
    In the present study, we investigate the mucoadhesive characteristics and release of the anticancer agent curcumin, contained in chitosan nanoparticles (CS-NPs). Such a system has potential therapeutic benefits in the treatment of colon cancer through prolonged retention and delivery. The CS-NPs were ionically gelled with tripolyphosphate (TPP) and registered an isoelectric pH of 6.2 (z-average diameter of 214 nm ± 1.0 nm). pH variations around the isoelectric point caused a reduction in CS-NPs electrical charge which correspondingly increased the z-average due to agglomeration. Curcumin release from CS-NPs was slowest at chitosan to TPP weight ratio of 3:1, with a significant retention (36%) at the end of 6 h. Adsorption isotherms of mucin on CS-NPs fitted both the Freundlich and Langmuir models, suggesting a monolayer-limited adsorption on heterogeneous sites with varied affinities. Encapsulated curcumin exerted an influence on the adsorption of mucin due to H-bonding as well as π-π interactions between the phenolic moieties of curcumin and mucin.
    Matched MeSH terms: Swine
  12. Tan SC, Chong CW, Teh CSJ, Ooi PT, Thong KL
    PeerJ, 2018;6:e5353.
    PMID: 30123701 DOI: 10.7717/peerj.5353
    Background: Enterococcus faecalis and Enterococcus faecium are ubiquitous opportunistic pathogens found in the guts of humans and farmed animals. This study aimed to determine the occurrence, antimicrobial resistance, virulence, biofilm-forming ability and genotypes of E. faecalis and E. faecium from swine farms. Correlations between the genotypes, virulotypes, antibiotic resistance, and the environmental factors such as locality of farms and farm hygiene practice were explored.

    Methods: E. faecalis and E. faecium strains were isolated from the oral, rectal and fecal samples of 140 pigs; nasal, urine and fecal samples of 34 farmers working in the farms and 42 environmental samples collected from seven swine farms located in Peninsular Malaysia. Antibiotic susceptibility test was performed using the disk diffusion method, and the antibiotic resistance and virulence genes were detected by Polymerase Chain Reaction. Repetitive Extragenic Palindromic-Polymerase Chain Reaction and Pulsed-Field Gel Electrophoresis were performed to determine the clonality of the strains. Crosstab/Chi-square test and DistLM statistical analyses methods were used to determine the correlations between the genotypes, virulence factors, antibiotic resistance, and the environmental factors.

    Results: A total of 211 E. faecalis and 42 E. faecium were recovered from 140 pigs, 34 farmers and 42 environmental samples collected from seven swine farms in Peninsular Malaysia. Ninety-eight percent of the strains were multidrug-resistant (resistant to chloramphenicol, tetracycline, ciprofloxacin and erythromycin). Fifty-two percent of the strains formed biofilms. Virulence genes efa, asaI, gelE, esp, cyl and ace genes were detected. Virulence genes efa and asaI were most prevalent in E. faecalis (90%) and E. faecium (43%), respectively. Cluster analyses based on REP-PCR and PFGE showed the strains were genetically diverse. Overall, the strains isolated from pigs and farmers were distinct, except for three highly similar strains found in pigs and farmers. The strains were regional- and host-specific.

    Discussion: This study revealed alarming high frequencies of multidrug-resistant enterococci in pigs and swine farmers. The presence of resistance and virulence genes and the ability to form biofilm further enhance the persistence and pathogenicity of the strains. Although the overall clonality of the strains were regionals and host-specific, strains with high similarity were found in different hosts. This study reiterates a need of a more stringent regulation to ensure the proper use of antibiotics in swine husbandry to reduce the wide spread of multidrug-resistant strains.

    Matched MeSH terms: Swine
  13. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H
    Pathogens, 2020 Jun 25;9(6).
    PMID: 32630410 DOI: 10.3390/pathogens9060512
    The transmission of zoonotic filarial parasites by black flies has so far been reported in the Chiang Mai and Tak provinces, Thailand, and the bites of these infected black flies can cause a rare disease-human zoonotic onchocerciasis. However, species identification of the filarial parasites and their black fly vectors in the Chiang Mai province were previously only based on a morphotaxonomic analysis. In this study, a combined approach of morphotaxonomic and molecular analyses (mitochondrial cox1, 12S rRNA, and nuclear 18S rRNA (SSU HVR-I) genes) was used to clarify the natural filarial infections in female black flies collected by using human and swine baits from two study areas (Ban Lek and Ban Pang Dang) in the Chiang Mai province from March 2018 to January 2019. A total of 805 and 4597 adult females, belonging to seven and nine black fly taxa, were collected from Ban Lek and Ban Pang Dang, respectively. At Ban Lek, four of the 309 adult females of Simulium nigrogilvum were positive for Onchocerca species type I in the hot and rainy seasons. At Ban Pang Dang, five unknown filarial larvae (belonging to the same new species) were detected in Simulium sp. in the S. varicorne species-group and in three species in the S. asakoae species-group in all seasons, and three non-filarial larvae of three different taxa were also found in three females of the S. asakoae species-group. This study is the first to molecularly identify new filarial species and their vector black fly species in Thailand.
    Matched MeSH terms: Swine
  14. Ruviniyia K, Abdullah DA, Sumita S, Lim YAL, Ooi PT, Sharma RSK
    Parasitol Res, 2020 May;119(5):1663-1674.
    PMID: 32219552 DOI: 10.1007/s00436-020-06648-w
    Enterocytozoon bieneusi is an emerging opportunistic pathogen infecting humans, and both domestic and wild pigs are known to harbour zoonotic genotypes. There remains a paucity of information on the prevalence and epidemiology of this enteropathogen in Southeast Asia. The present study was undertaken to determine the molecular prevalence and risk factors associated with E. bieneusi infection among commercially farmed pigs in Malaysia. Faecal samples were collected from 450 pigs from 15 different farms and subjected to nested PCR amplification of the ribosomal internal transcribed spacer (ITS) gene of E. bieneusi. Phylogenetic analysis involved 28 nucleotide sequences of the ITS region of E. bieneusi. An interviewer-administered questionnaire provided information on the animal hosts, farm management systems and environmental factors and was statistically analysed to determine the risk factors for infection. The prevalence of E. bieneusi infection was relatively high (40.7%). The highest prevalence (51.3%) was recorded among the piglets, while the adults showed the lowest level of infection (31.3%). Multivariate analysis indicated that age of the pigs, distance of the farm from human settlement and farm management system were significant risk factors of infection. Three genotypes (EbpA, EbpC and Henan-III) detected among the pigs are potentially zoonotic. The high prevalence of E. bieneusi among locally reared pigs, the presence of zoonotic genotypes and the spatial distribution of pig farms and human settlements warrant further investigation on the possibility of zoonotic transmission.
    Matched MeSH terms: Swine/parasitology*; Swine Diseases/epidemiology*
  15. Rauff-Adedotun AA, Mohd Zain SN, Farah Haziqah MT
    Parasitol Res, 2020 Nov;119(11):3559-3570.
    PMID: 32951145 DOI: 10.1007/s00436-020-06828-8
    Blastocystis is the most frequently observed eukaryotic gastrointestinal symbiont in humans and animals. Its low host specificity and zoonotic potential suggest that animals might serve as possible reservoirs for transmission. The prevalence and subtype distributions of Blastocystis sp. in animal populations in Southeast Asia, a hotspot for zoonotic diseases, are reviewed. Recommendations for future research aimed at understanding the zoonotic role of Blastocystis are also included. Seven countries have, so far, reported Blastocystis infection in various animals, such as livestock, poultry, companion animals, and non-human primates. Pigs were the most studied animals, and there were records of 100% prevalence in pigs, cattle, and ostriches. Using polymerase chain reaction (PCR)-based approaches, twelve Blastocystis sp. subtypes (STs), namely ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9, ST10, ST12, and ST14 have been recognised infecting animals of Southeast Asia. ST1 and ST5 were the most frequently identified, and Malaysia observed the most diverse distribution of subtypes. Further investigations on Blastocystis sp. in various animal hosts, using adequate sample sizes and uniform detection methods, are essential for a better understanding of the distribution of this organism. Detailed genome studies, especially on STs shared by humans and animals, are also recommended.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/parasitology
  16. Uni S, Fukuda M, Agatsuma T, Bain O, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2015 Dec;64(6):493-502.
    PMID: 26165205 DOI: 10.1016/j.parint.2015.07.001
    Human zoonotic onchocercosis is caused by Onchocerca dewittei japonica, parasitic in wild boars (Sus scrofa leucomystax) in Japan. Previously, microfilariae longer than those of Onchocerca dewittei japonica were observed in skin snips from wild boars during the study of O. dewittei japonica. Moreover, the third-stage larvae (L3) of these longer microfilariae were obtained from the blackfly Simulium bidentatum after experimental injections. Based on morphometric and molecular studies, similar L3 were found in blackflies during fieldwork in Oita, Japan. However, except for O. dewittei japonica, adult worms of Onchocerca have not been found in wild boars. In this study, we discovered adult females of a novel Onchocerca species in the skin of a wild boar in Oita, and named it Onchocerca takaokai n. sp. Females of this new species had longer microfilariae and differed from O. dewittei japonica in terms of their morphological characteristics and parasitic location. The molecular characteristics of the cytochrome c oxidase subunit 1 and 12S rRNA genes of the new species were identical to those of the longer microfilariae and L3 previously detected, but they differed from those of O. dewittei japonica at the species level. However, both species indicated a close affinity among their congeners and Onchocerca ramachandrini, parasitic in the warthog in Africa, was basal in the Suidae cluster of the 12S rRNA tree.
    Matched MeSH terms: Swine
  17. Uni S, Fukuda M, Uga S, Agatsuma T, Nakatani J, Suzuki K, et al.
    Parasitol Int, 2021 Aug;83:102313.
    PMID: 33662527 DOI: 10.1016/j.parint.2021.102313
    Reports of zoonotic infections with Onchocerca japonica (Nematoda: Filarioidea), which parasitizes the Japanese wild boar, Sus scrofa leucomystax, have recently increased in Japan. To predict the occurrence of infection in humans, it is necessary to determine the prevalence of O. japonica infection in the natural host animals. We investigated the presence of adult worms in the footpads, and of microfilariae in skin snips, taken from the host animals, between 2000 and 2018. Onchocerca japonica was found in 165 of 223 (74%) Japanese wild boars in Honshu and Kyushu. Among the nine regions studied, the highest prevalence of O. japonica infection was found in Oita, Kyushu, where 47 of 52 (90.4%) animals were infected. The ears were the predilection sites for O. japonica microfilariae. Adult worms of O. japonica were found more frequently in the hindlimbs than in the forelimbs of the host animals. Onchocerca takaokai was found in 14 of 52 (26.9%) Japanese wild boars in Oita. In Kakeroma Island among the Nansei Islands, both O. japonica and O. takaokai were isolated from the Ryukyu wild boar, S. s. riukiuanus. These observations could help predict future occurrences of human zoonotic onchocercosis in Japan.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/parasitology
  18. Uni S, Fukuda M, Ogawa K, Lim YA, Agatsuma T, Bunchom N, et al.
    Parasitol Int, 2017 Oct;66(5):593-595.
    PMID: 28648713 DOI: 10.1016/j.parint.2017.06.006
    An 11-year-old boy living in Otsu City, Shiga Prefecture, Kansai Region, Western Honshu, Japan had zoonotic onchocercosis. The patient developed a painful swelling on the little finger of his left hand. The worm detected in the excised mass had external transverse ridges but did not have inner striae in the cuticle. On the basis of the parasite's histopathological characteristics, the causative agent was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species of the filarial parasite was confirmed by sequencing the cox1 gene of the parasite. The Japanese wild boar Sus scrofa leucomystax is a definitive host for O. dewittei japonica, which is then transmitted by blackflies as the vector to humans. The current case described occurred in the Kansai Region, Western Honshu, where such infections were previously not reported.
    Matched MeSH terms: Swine; Swine Diseases/parasitology
  19. Fukuda M, Uni S, Igari T, Utsumi Y, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2019 Oct;72:101943.
    PMID: 31220633 DOI: 10.1016/j.parint.2019.101943
    A 73-year-old man living in Kawamata-machi, Fukushima Prefecture, Northeastern Honshu, Japan, visited a hospital with complaints of a subcutaneous swelling that had developed on the back of his left hand. The nodule was surgically removed from the vagina fibrosa tendinis of his left forefinger. Based on the histopathological characteristics, the causative agent of this nodule was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species identification was confirmed by cox1 gene sequencing of the worm tissues from paraffin-embedded sections of the nodule. Although 11 cases of zoonotic onchocercosis have previously been recorded in Kyushu and Western Honshu, Japan, the present findings represent the first human case of infection with O. dewittei japonica in Northeastern Honshu, Japan.
    Matched MeSH terms: Swine; Swine Diseases/parasitology; Swine Diseases/transmission*
  20. Uni S, Fukuda M, Otsuka Y, Hiramatsu N, Yokobayashi K, Takahashi H, et al.
    Parasit Vectors, 2015;8:59.
    PMID: 25623081 DOI: 10.1186/s13071-015-0655-2
    Zoonotic infections with Onchocerca species are uncommon, and to date only 25 clinical cases have been reported worldwide. In Japan, five previous zoonotic infections were concentrated in Oita, Kyushu (the southern island), with one previous case in Hiroshima in the western part of Honshu (the main island). The causative agent in Japan was identified as Onchocerca dewittei japonica Uni, Bain & Takaoka, 2001 from Japanese wild boars (Sus scrofa leucomystax Temminck, 1842). Here we report two infections caused by a female and male O. dewittei japonica, respectively, among residents of Hiroshima and Shimane Prefectures in the western part of Honshu.
    Matched MeSH terms: Swine; Swine Diseases/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links