Displaying publications 121 - 140 of 406 in total

Abstract:
Sort:
  1. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Bashir FA, Shuhaimi-Othman M, Mazlan AG
    J Environ Public Health, 2012;2012:352309.
    PMID: 22046193 DOI: 10.1155/2012/352309
    This study is focused on evaluating the trace metal levels in water and tissues of two commercial fish species Arius thalassinus and Pennahia anea that were collected from Kapar and Mersing coastal waters. The concentrations of Fe, Zn, Al, As, Cd and Pb in these coastal waters and muscle, liver and gills tissues of the fishes were quantified. The relationship among the metal concentrations and the height and weight of the two species were also examined. Generally, the iron has the highest concentrations in both water and the fish species. However, Cd in both coastal waters showed high levels exceeding the international standards. The metal level concentration in the sample fishes are in the descending order livers > gills > muscles. A positive association between the trace metal concentrations and weight and length of the sample fishes was investigated. Fortunately the level of these metal concentrations in fish has not exceeded the permitted level of Malaysian and international standards.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I
    Environ Monit Assess, 2012 Mar;184(3):1325-34.
    PMID: 21472384 DOI: 10.1007/s10661-011-2043-5
    This study aims to determine the composition of surfactants in the lake surface microlayer, rainwater, and atmospheric aerosols in the area surrounding Lake Chini, Pahang. Surfactants in the lake surface microlayer were taken from seven different stations around the lake, while samples of rainwater were taken from five different sampling stations. The samples of atmospheric aerosols were collected from the Lake Chini Research Centre which is in close proximity to the lake. The colorimetric analysis method was used to determine the composition and concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The concentration of anionic surfactants, as MBAS, in the surface microlayer ranged between 0.08 to 0.23 μmol L(-1), while the range of concentration of cationic surfactants as DBAS ranged from 0.09 to 0.11 μmol L(-1). The concentration of MBAS was higher in rainwater when compared to surfactants in the lake surface microlayer. The high concentration of surfactants in the fine mode of atmospheric aerosols suggests that natural and anthropogenic sources of surfactants contribute to the atmospheric surfactants.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Sapari P, Ismail BS
    Environ Monit Assess, 2012 Oct;184(10):6347-56.
    PMID: 22089624 DOI: 10.1007/s10661-011-2424-9
    The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Al-Shami SA, Salmah MR, Hassan AA, Azizah MN
    Environ Monit Assess, 2011 Jun;177(1-4):233-44.
    PMID: 20697808 DOI: 10.1007/s10661-010-1630-1
    Morphological mentum deformities which represent sublethal effect of exposure to different types of pollutants were evaluated in Chironomus spp. larvae inhabiting three polluted rivers of Juru River Basin in northwestern peninsular Malaysia. Using mentum deformity incidences, the modified toxic score index (MTSI) was developed based on Lenat's toxic score index (TSI). The suggested MTSI was compared with TSI in terms of its effectiveness to identify different pollutants including heavy metals. The MTSI showed stronger relationship to total deformity incidence expressed as percentage. Additionally, the multivariate RDA model showed higher capability of MTSI to explain the variations in heavy metal contents of the river sediments. The MTSI was recommended in bioassessment of water and sediment quality using the mentum deformities of Chironomus spp. larvae from aquatic ecosystems receiving anthropogenic, agricultural, or industrial discharges.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Tajul Baharuddin MF, Taib S, Hashim R, Zainal Abidin MH, Ishak MF
    Environ Monit Assess, 2011 Sep;180(1-4):345-69.
    PMID: 21136290 DOI: 10.1007/s10661-010-1792-x
    Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Adlan MN
    J Hazard Mater, 2010 Apr 15;176(1-3):749-58.
    PMID: 20022166 DOI: 10.1016/j.jhazmat.2009.11.099
    Mature landfill leachate is typically non-biodegradable and contains high concentration of refractory organics. The aim of this research was to optimize operating parameters in electro-Fenton process, for the removal of recalcitrant organics from semi-aerobic landfill leachate using response surface methodology (RSM). Effectiveness of important process parameters H(2)O(2)/Fe(2+) molar ratio, current density, pH and reaction time were determined, optimized and modeled successfully. Significant quadratic polynomial models were obtained (R(2)=0.9972 and 0.9984 for COD and color removals, respectively). Numerical optimization based on desirability function were employed; in a 43 min trial 94.07% of COD and 95.83% of color were removed at pH 3 and H(2)O(2)/Fe(2+) molar ratio 1, while current density was 49 mA/cm(2). The results indicate that E-Fenton process was an effective technology for semi-aerobic landfill leachate treatment.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  9. Zahed MA, Nabi Bidhendi G, Pardakhti A, Esmaili-Sari A, Mohajeri S
    Bull Environ Contam Toxicol, 2009 Dec;83(6):899-902.
    PMID: 19760353 DOI: 10.1007/s00128-009-9874-6
    Polychlorinated biphenyl (PCB) was detected as isomer groups (congener numbers 28, 52, 101, 118, 138, 153 and 180) in the coastal water and sediment of four stations around Shadegan wetland protected area in the northwestern part of the Persian Gulf. Total PCB concentration range was 8-375 ng/L in water and 3.4-50.2 μg/g in sediment. Concentration of different congeners and chromatogram indicates that the source of PCB in this area can be Clophen A60; it used for long time in Iranian electronic industries. Other chlorinated hydrocarbons such as lindane, DDT and their metabolites were also present in the samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Nagarajan R, Rajmohan N, Mahendran U, Senthamilkumar S
    Environ Monit Assess, 2010 Dec;171(1-4):289-308.
    PMID: 20072811 DOI: 10.1007/s10661-009-1279-9
    As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Zulkifli SZ, Mohamat-Yusuff F, Arai T, Ismail A, Miyazaki N
    Environ Monit Assess, 2010 Oct;169(1-4):457-72.
    PMID: 19856123 DOI: 10.1007/s10661-009-1189-x
    Concentrations of 11 trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Pb, and U) were determined in the intertidal surface sediments of Peninsular Malaysia. The average trace element concentrations are ranked as follows: Zn>V>As>Cr>Pb>Cu>Ni>Co>U>g>Cd. Interim Sediment Quality Guidelines (ISQGs) employed in present study are the Australia and New Zealand joint guideline (ANZECC/ARMCANZ), and the Hong Kong authorities. From the pooled data, none of these trace elements have the average concentration above the ISQG-high values. However, As and Ag average concentrations were over the ISQG-low values. Some elements were found to have the average concentration above the ISQG-high and/or ISQG-low in certain locations, including Kampung Pasir Putih (JPP), Lumut Port (ALP), Kuala Perai (PKP), Port Dickson (NPD), and others. The lowest and highest concentrations in a specific sampling location and maritime area varied among the elements, variations that were greatly affected by natural and anthropogenic activities in a given area. For each trace element, there were various levels of concentration among the sampling locations and maritime areas. These patterns indicated pollutant sources of an element for each area perhaps derived from nearby areas and did not widely distributed to other locations. It is necessary for Malaysia to develop an ISQG for effective quick screening and evaluation of the coastal environment of Peninsular Malaysia.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Bashir MJ, Isa MH, Kutty SR, Awang ZB, Aziz HA, Mohajeri S, et al.
    Waste Manag, 2009 Sep;29(9):2534-41.
    PMID: 19523802 DOI: 10.1016/j.wasman.2009.05.004
    This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na(2)SO(4) (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na(2)SO(4) concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm(2) current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Ahmad AA, Hameed BH, Ahmad AL
    J Hazard Mater, 2009 Oct 30;170(2-3):612-9.
    PMID: 19515487 DOI: 10.1016/j.jhazmat.2009.05.021
    The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400-600 degrees C), activation time (1-3h) and H(3)PO(4):precursor (wt%) impregnation ratio (3:1-6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 degrees C, activation time of 2h and 14min and chemical impregnation ratio of 4.45.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Siti Farizwana MR, Mazrura S, Zurahanim Fasha A, Ahmad Rohi G
    J Environ Public Health, 2010;2010:615176.
    PMID: 21461348 DOI: 10.1155/2010/615176
    The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Kunacheva C, Boontanon SK, Fujii S, Tanaka S, Musirat C, Artsalee C, et al.
    Water Sci Technol, 2009;60(4):975-82.
    PMID: 19700836 DOI: 10.2166/wst.2009.462
    Perfluorinated compounds (PFCs) have been used for many years, and are distributed all over the world. This study focused on occurrences of PFCs, especially perfluorooctane sulfonate (PFOS) and perfluorooctonoic acid (PFOA) in Thai rivers and industrial estate discharges, while comparing results with rivers of other Asian countries (Japan, China, and Malaysia). Surveys were conducted in Chao Phraya River, Bangpakong River and three industrial estates. A solid phase extraction (SPE) and HPLC-ESI-MS/MS were used for the analysis of these chemicals. The average concentrations of PFOS and PFOA were 1.9 and 4.7 ng/L, respectively in Chao Phraya River, while lower concentrations were detected in Bangpakong River with the averages of 0.7 ng/L for both PFOS and PFOA. Higher concentrations were detected in all industrial estate discharges with the averages of 64.3 ng/L for PFOA and 17.9 ng/L for PFOS., Total loadings from three industrial estates were 1.93 g/d for PFOS and 11.81 g/d for PFOA. The concentration levels in Thai rivers were less than rivers in Japan, China, and Malaysia. However, PFCs loading rate of Chao Phraya River was much higher than Yodo River (Japan), due to the higher flow rate. The other six PFCs were found above the Limit of Quantification (LOQ) in most samples. PFHxS and PFNA were also highly detected in some river samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, et al.
    Mar Pollut Bull, 2009 Feb;58(2):189-200.
    PMID: 19117577 DOI: 10.1016/j.marpolbul.2008.04.049
    We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  19. Praveena SM, Ahmed A, Radojevic M, Abdullah MH, Aris AZ
    Bull Environ Contam Toxicol, 2008 Jul;81(1):52-6.
    PMID: 18506379 DOI: 10.1007/s00128-008-9460-3
    Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I(geo)) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  20. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links