Displaying publications 121 - 140 of 262 in total

Abstract:
Sort:
  1. Soo ZMP, Khan NA, Siddiqui R
    Acta Trop, 2020 Jan;201:105183.
    PMID: 31542372 DOI: 10.1016/j.actatropica.2019.105183
    Leptospirosis is a zoonotic disease caused by the pathogenic helical spirochetes, Leptospira. Symptoms include sudden-onset fever, severe headaches, muscle pain, nausea and chills. Leptospirosis is endemic in developing countries such as Malaysia, India, Sri Lanka, and Brazil where thousands of cases are reported annually. The disease risk factors include the high population of reservoirs, environmental factors, recreational factors, and occupational factors. To end the endemicity of leptospirosis, these factors need to be tackled. The management of leptospirosis needs to be refined. Early diagnosis remains a challenge due to a lack of clinical suspicion among physicians, its non-specific symptoms and a limited availability of rapid point-of-care diagnostic tests. The purpose of this review is to provide insight into the status of leptospirosis in developing countries focusing on the risk factors and to propose methods for the improved management of the disease.
    Matched MeSH terms: Zoonoses
  2. Lim VK
    Malays J Pathol, 2011 Jun;33(1):1-5.
    PMID: 21874744 MyJurnal
    Leptospirosis is a re-emerging zoonotic infection. In developing countries large outbreaks have occurred in urban slums and following floods. Individuals from developed nations are also now more frequently exposed to the infection as a result of international travel and greater participation in certain outdoor recreational activities. Leptospirosis remains a diagnostic challenge since it often presents as a non-specific febrile event and laboratory diagnosis is still currently inadequate. Rapid tests may not be sufficiently sensitive in early disease and culture facilities are not widely available. A severe pulmonary haemorrhagic form of the infection is increasingly being encountered in many countries including Malaysia. The control of leptospirosis is largely dependent on general hygienic measures and rodent control. An effective human vaccine is still not available. There remains much that is unknown about this disease and there is scope and opportunity for good quality research.
    Matched MeSH terms: Zoonoses/epidemiology
  3. Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al.
    Elife, 2019 10 22;8.
    PMID: 31638575 DOI: 10.7554/eLife.47602
    Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
    Matched MeSH terms: Zoonoses/transmission*
  4. Stark DJ, Fornace KM, Brock PM, Abidin TR, Gilhooly L, Jalius C, et al.
    Ecohealth, 2019 12;16(4):638-646.
    PMID: 30927165 DOI: 10.1007/s10393-019-01403-9
    Land-use changes can impact infectious disease transmission by increasing spatial overlap between people and wildlife disease reservoirs. In Malaysian Borneo, increases in human infections by the zoonotic malaria Plasmodium knowlesi are hypothesised to be due to increasing contact between people and macaques due to deforestation. To explore how macaque responses to environmental change impact disease risks, we analysed movement of a GPS-collared long-tailed macaque in a knowlesi-endemic area in Sabah, Malaysia, during a deforestation event. Land-cover maps were derived from satellite-based and aerial remote sensing data and models of macaque occurrence were developed to evaluate how macaque habitat use was influenced by land-use change. During deforestation, changes were observed in macaque troop home range size, movement speeds and use of different habitat types. Results of models were consistent with the hypothesis that macaque ranging behaviour is disturbed by deforestation events but begins to equilibrate after seeking and occupying a new habitat, potentially impacting human disease risks. Further research is required to explore how these changes in macaque movement affect knowlesi epidemiology on a wider spatial scale.
    Matched MeSH terms: Zoonoses/epidemiology*
  5. Garba B, Bahaman AR, Bejo SK, Zakaria Z, Mutalib AR, Bande F
    Acta Trop, 2018 Feb;178:242-247.
    PMID: 29217379 DOI: 10.1016/j.actatropica.2017.12.010
    INTRODUCTION: Leptospirosis is a zoonotic disease caused by a diverse pathogenic leptospira species and serovars. The disease is transmitted directly following contact with infected urine and other body fluids or indirectly after contact with water or soil contaminated with infected urine.

    OBJECTIVES: While a wide range of domestic and wild animals are known to be reservoirs of the disease, occupation, international travel and recreation are beginning to assume a center stage in the transmission of the disease. The objective of this study is to review available literatures to determine the extent to which these aforementioned risk factors aid the transmission, increase incidence and outbreak of leptospirosis in Malaysia.

    STUDY DESIGN: The review was conducted based on prevalence, incidence, and outbreak cases of leptospirosis among human and susceptible animals predisposed to several of the risk factors identified in Malaysia.

    METHODS: Literature searchers and reviews were conducted based on articles published in citation index journals, Malaysian ministry of health reports, periodicals as well as reliable newspapers articles and online media platforms. In each case, the newspapers and online media reports were supported by press briefings by officials of the ministry of health and other agencies responsible.

    RESULTS: The disease is endemic in Malaysia, and this was attributed to the large number of reservoir animals, suitable humid and moist environment for proliferation as well as abundant forest resources. Over 30 different serovars have been detected in Malaysia in different domestic and wild animal species. This, in addition to the frequency of flooding which has increased in recent years, and has helped increase the risk of human exposure. Occupation, recreation, flooding and rodent population were all identified as an important source and cause of the disease within the study population.

    CONCLUSION: There is an urgent need for the government and other stakeholders to intensify efforts to control the spread of the disease, especially as it greatly affect human health and the tourism industry which is an important component of the Malaysian economy. The risk of infection can be minimized by creating awareness on the source and mode of transmission of the disease, including the use of protective clothing and avoiding swimming in contaminated waters. Moreover, improved diagnostics can also help reduce the suffering and mortalities that follow infection after exposure to infection source.

    Matched MeSH terms: Zoonoses
  6. Chin AZ, Maluda MCM, Jelip J, Jeffree MSB, Culleton R, Ahmed K
    J Physiol Anthropol, 2020 Nov 23;39(1):36.
    PMID: 33228775 DOI: 10.1186/s40101-020-00247-5
    BACKGROUND: Malaria is a major public-health problem, with over 40% of the world's population (more than 3.3 billion people) at risk from the disease. Malaysia has committed to eliminate indigenous human malaria transmission by 2020. The objective of this descriptive study is to understand the epidemiology of malaria in Malaysia from 2000 through 2018 and to highlight the threat posed by zoonotic malaria to the National Malaria Elimination Strategic Plan.

    METHODS: Malaria is a notifiable infection in Malaysia. The data used in this study were extracted from the Disease Control Division, Ministry of Health Malaysia, contributed by the hospitals and health clinics throughout Malaysia. The population data used in this study was extracted from the Department of Statistics Malaysia. Data analyses were performed using Microsoft Excel. Data used for mapping are available at EPSG:4326 WGS84 CRS (Coordinate Reference System). Shapefile was obtained from igismap. Mapping and plotting of the map were performed using QGIS.

    RESULTS: Between 2000 and 2007, human malaria contributed 100% of reported malaria and 18-46 deaths per year in Malaysia. Between 2008 and 2017, indigenous malaria cases decreased from 6071 to 85 (98.6% reduction), while during the same period, zoonotic Plasmodium knowlesi cases increased from 376 to 3614 cases (an 861% increase). The year 2018 marked the first year that Malaysia did not report any indigenous cases of malaria caused by human malaria parasites. However, there was an increasing trend of P. knowlesi cases, with a total of 4131 cases reported in that year. Although the increased incidence of P. knowlesi cases can be attributed to various factors including improved diagnostic capacity, reduction in human malaria cases, and increase in awareness of P. knowlesi, more than 50% of P. knowlesi cases were associated with agriculture and plantation activities, with a large remainder proportion linked to forest-related activities.

    CONCLUSIONS: Malaysia has entered the elimination phase of malaria control. Zoonotic malaria, however, is increasing exponentially and becoming a significant public health problem. Improved inter-sectoral collaboration is required in order to develop a more integrated effort to control zoonotic malaria. Local political commitment and the provision of technical support from the World Health Organization will help to create focused and concerted efforts towards ensuring the success of the National Malaria Elimination Strategic Plan.

    Matched MeSH terms: Zoonoses*
  7. Ahmad K
    Lancet, 2000 Jul 15;356(9225):230.
    PMID: 10963210
    Matched MeSH terms: Zoonoses/transmission
  8. Greer GJ, Dennis DT, Lai PF, Anuar H
    J Trop Med Hyg, 1989 Jun;92(3):203-8.
    PMID: 2738992
    A stable population at risk of Malaysian schistosomiasis was studied. Census results indicated that approximately one-fourth of the inhabitants used a stream where Schistosoma malayensis-infected snails were present as their principal source of water for bathing, drinking, and household tasks. The general population also contacted this stream when fording it or while fishing. Serological surveys using enzyme-linked immunosorbent assay (ELISA) and the circumoval precipitin (COP) test revealed six (9%) and three (4%) positives, respectively, among 67 persons examined. No schistosome ova were found in a general survey of 56 persons which included five ELISA positive and two COP test positive patients. ELISA and COP test prevalences among those dependent on the foci of transmission for water, 13 and 7% respectively, were only slightly higher than prevalences among the remainder of the population, 8 and 4% respectively. These results indicate that even among a stable population at risk of Malaysian schistosomiasis the prevalence is low. Our findings support the hypothesis that S. malayensis is a zoonotic infection in man and that it is unlikely to become a significant public health problem.
    Matched MeSH terms: Zoonoses
  9. Muul I
    Science, 1970 Dec 18;170(3964):1275-9.
    PMID: 5479006
    Insufficient use has been made of ecological data concerning potential hosts in studies to determine the life cycles of zoonotic parasites and pathogens. Factors such as the geographical distribution of hosts, the altitudes at which they live, their affinities for specific habitats, their vertical distribution within the habitat, and the periodicity of their activities have bearing on the hosts' predisposition to involvement in disease cycles. Diets and feeding habits may determine the likelihood of acquiring infection. Reproductive characteristics determine whether a species is suitable as a reservoir or as an amplifying host. Behavioral factors, such as selection of a particular kind of nest site, may also predispose the involvement of the host with parasites and pathogens. Behavior patterns may determine the maximum population densities of hosts. Estimates of population sizes, of relative abundances of species, and of the involvement of species in disease cycles may be strongly influenced by the collecting and sampling methods that are used and also by the behavioral response of the mammals toward collecting devices, such as traps.
    Matched MeSH terms: Zoonoses/epidemiology*
  10. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
    Matched MeSH terms: Zoonoses*
  11. Farid Che Ghazali, Hisham Atan Edinur, Sirajudeen, K.N.S., Aroyehun, Abdul Qudus B., Shariza Abdul Razak
    MyJurnal
    Recognition of health benefits associated with consumption of marine derived biomasses is one of the most promising developments in human nutrition and disease-prevention research. This endeavor for bioactives and functional ingredients discovery from marine sources is “experience driven,” as such the search for therapeutically useful synthetic drugs, and functional components is like “looking for a needle in a haystack,” thus a daunting task. Zoonotic infection, adulteration, global warming and religious belief can be the star-gate barrier: - For example, the outsourcing for Glycosaminoglycans (GAGs), a pharmacologically bioactive compound have emerged as novel biomarkers and molecular players both within tumor cells and their microenvironment, as they integrate signals from growth factors, chemokines, integrins, and cell-cell matrix adhesion. As such, worldwide initiatives in outsourcing from geochemical signatures marine biomasses are flourishing. Most of these scientific interests are related to marketable compounds optimised via biotechnology applications. Approximately 50% of the US FDA approved drugs during 1981–2002 consist of either marine metabolites or their synthetic analogs. These bioactive compounds acts as antioxidant, peptides, chitoligosaccharides derivatives, sulfated polysaccharides, phlorotannins and carotenoids. Highlights from works to harness and provide scientific support to folk medicine much claimed legacy, pertaining to geochemical signatures vouchered sea cucumbers, macroalgae and crown of thorns starfish will be extrapolated.
    Matched MeSH terms: Zoonoses
  12. Lancet, 1970 Apr 11;1(7650):761-2.
    PMID: 4191257
    Matched MeSH terms: Zoonoses
  13. Stanton AT, Fletcher W
    Matched MeSH terms: Zoonoses
  14. Lim, M.L., Ismail, S.S., Rahman, N., Watanabe, M.
    Jurnal Veterinar Malaysia, 2015;27(1):24-26.
    MyJurnal
    Melioidosis is a zoonotic disease as a result of infection by Burkholderia pseudomallei. It is of significant public health
    concern due to its ubiquitous nature with high morbidity and mortality in humans and animals. In cats, the disease is usually reported
    with abscess formation in lung, liver and spleen, however, isolated articular melioidosis is rare. A 1-year-old, a female Domestic
    Shorthair cat was presented to University Veterinary Hospital, Universiti Putra Malaysia (UVH-UPM) with swollen right elbow and
    non weight bearing lameness of the right forelimb. Physical examination revealed pyrexia, soft tissue swelling and pain upon
    palpation of the right elbow joint. Radiographs of the right forelimb revealed osteolysis at the distal third of the humerus and
    proximal radius and ulna, cortical thinning at the olecranon and soft tissue swelling around the elbow joint. Bacterial culture of the
    joint fluid revealed positive growth for Burkholderia pseudomallei. Unfortunately, the owner opted to euthanise the cat citing
    personal reasons. Upon necropsy, there was presence of multiple caseous nodules within the right elbow joint cavity only and none
    of the other limbs, lung, spleen and liver was affected. It is important for veterinarian to be aware of septic arthritis and osteomyelitis
    form of melioidosis.
    Matched MeSH terms: Zoonoses
  15. Talukdar P, Dutta D, Ghosh E, Bose I, Bhattacharjee S
    Appl Biochem Biotechnol, 2023 Apr;195(4):2451-2462.
    PMID: 36656534 DOI: 10.1007/s12010-022-04300-0
    Viral diseases are causing mayhem throughout the world. One of the zoonotic viruses that have emerged as a potent threat to community health in the past few decades is Nipah virus. Nipah viral sickness is a zoonotic disease whose main carrier is bat. This disease is caused by Nipah virus (NiV). It belongs to the henipavirous group and of the family paramyxoviridae. Predominantly Pteropus spp. is the carrier of this virus. It was first reported from the Kampung Sungai Nipah town of Malaysia in 1998. Human-to-human transmission can also occur. Several repeated outbreaks were reported from South and Southeast Asia in the recent past. In humans, the disease is responsible for rapid development of acute illness, which can result in severe respiratory illness and serious encephalitis. Therefore, this calls for an urgent need for health authorities to conduct clinical trials to establish possible treatment regimens to prevent any further outbreaks.
    Matched MeSH terms: Zoonoses/epidemiology; Zoonoses/prevention & control
  16. Ngoi ST, Thong KL
    Diagn Microbiol Infect Dis, 2013 Dec;77(4):304-11.
    PMID: 24139970 DOI: 10.1016/j.diagmicrobio.2013.09.004
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common causative agent of non-typhoidal salmonellosis in Malaysia. We aimed to characterize S. Enteritidis isolated from humans and animals by analyzing their antimicrobial resistance profiles and genotypes. A total of 111 strains were characterized using multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and antimicrobial susceptibility testing. Both typing methods revealed that genetically similar S. Enteritidis strains had persisted among human and animal populations within the period of study (2003-2008). Only 39% of the strains were multi-drug resistant (i.e., resistant to 3 or more classes of antimicrobial agents), with a majority (73%) of these in low-risk phase (multiple antibiotic resistant index <0.20). Limited genetic diversity among clinical and zoonotic S. Enteritidis suggested that animals are possible sources of human salmonellosis. The degree of multi-drug resistance among the strains was generally low during the study period.
    Matched MeSH terms: Zoonoses/microbiology*
  17. Lim YA, Lai MM, Mahdy MA, Mat Naim HR, Smith HV
    Environ Res, 2009 Oct;109(7):857-9.
    PMID: 19664767 DOI: 10.1016/j.envres.2009.07.007
    We used a combined microscopy-molecular approach to determine the occurrence and identities of waterborne Giardia sp. cysts isolated from 18 separate, 10l grab samples collected from a Malaysian zoo. Microscopy revealed that 17 of 18 samples were Giardia cyst positive with concentrations ranging from 1 to 120 cysts/l. Nine (52.9%) of the 17 cyst positive samples produced amplicons of which 7 (77.8%) could be sequenced. Giardia duodenalis assemblage A (6 of 7) and assemblage B (1 of 7), both infectious to humans, were identified at all sampling sites at the zoo. The presence of human infectious cysts raises public health issues, and their occurrence, abundance and sources should be investigated further. In this zoo setting, our data highlight the importance of incorporating environmental sampling (monitoring) in addition to routine faecal examinations to determine veterinary and public health risks, and water monitoring should be considered for inclusion as a separate element in hazard analysis, as it often has a historical (accumulative) connotation.
    Matched MeSH terms: Zoonoses/parasitology*
  18. Mokhtar AS, Tay ST
    Am J Trop Med Hyg, 2011 Nov;85(5):931-3.
    PMID: 22049052 DOI: 10.4269/ajtmh.2011.10-0634
    The presence of Rickettsia felis, Bartonella henselae and B. clarridgeiae in 209 fleas (Ctenocephalides felis) obtained from domestic cats and dogs in several locations in Malaysia was investigated in this study. Using a polymerase chain reaction specific for the citrate synthase (gltA) and 17-kD antigenic protein (17kD) genes of rickettsiae, we detected R. felis DNA in 6 (2.9%) fleas. For detection of bartonellae, amplification of the heme-binding protein (pap31) and riboflavin synthase (ribC) genes identified B. henselae and B. clarridgeiae DNA in 24 (11.5%) and 40 (19.1%) fleas, respectively. The DNA of B. henselae and B. clarridgeiae was detected in 10 (4.8%) fleas. Two B. henselae genogroups (Marseille and Houston-1) were detected in this study; genogroup Marseille (genotype Fizz) was found more often in the fleas. The findings in this study suggest fleas as potential vectors of rickettsioses and cat-scratch disease in this country.
    Matched MeSH terms: Zoonoses
  19. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Zoonoses
  20. Ruviniyia K, Abdullah DA, Sumita S, Lim YAL, Ooi PT, Sharma RSK
    Parasitol Res, 2020 May;119(5):1663-1674.
    PMID: 32219552 DOI: 10.1007/s00436-020-06648-w
    Enterocytozoon bieneusi is an emerging opportunistic pathogen infecting humans, and both domestic and wild pigs are known to harbour zoonotic genotypes. There remains a paucity of information on the prevalence and epidemiology of this enteropathogen in Southeast Asia. The present study was undertaken to determine the molecular prevalence and risk factors associated with E. bieneusi infection among commercially farmed pigs in Malaysia. Faecal samples were collected from 450 pigs from 15 different farms and subjected to nested PCR amplification of the ribosomal internal transcribed spacer (ITS) gene of E. bieneusi. Phylogenetic analysis involved 28 nucleotide sequences of the ITS region of E. bieneusi. An interviewer-administered questionnaire provided information on the animal hosts, farm management systems and environmental factors and was statistically analysed to determine the risk factors for infection. The prevalence of E. bieneusi infection was relatively high (40.7%). The highest prevalence (51.3%) was recorded among the piglets, while the adults showed the lowest level of infection (31.3%). Multivariate analysis indicated that age of the pigs, distance of the farm from human settlement and farm management system were significant risk factors of infection. Three genotypes (EbpA, EbpC and Henan-III) detected among the pigs are potentially zoonotic. The high prevalence of E. bieneusi among locally reared pigs, the presence of zoonotic genotypes and the spatial distribution of pig farms and human settlements warrant further investigation on the possibility of zoonotic transmission.
    Matched MeSH terms: Zoonoses/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links