Displaying publications 121 - 140 of 282 in total

Abstract:
Sort:
  1. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Food Res Int, 2023 Oct;172:113105.
    PMID: 37689840 DOI: 10.1016/j.foodres.2023.113105
    The increase in rice consumption and demand for high-quality rice is impacted by the growth of socioeconomic status in developing countries and consumer awareness of the health benefits of rice consumption. The latter aspects drive the need for rapid, low-cost, and reliable quality assessment methods to produce high-quality rice according to consumer preference. This is important to ensure the sustainability of the rice value chain and, therefore, accelerate the rice industry toward digital agriculture. This review article focuses on the measurements of the physicochemical and sensory quality of rice, including new and emerging technology advances, particularly in the development of low-cost, non-destructive, and rapid digital sensing techniques to assess rice quality traits and consumer perceptions. In addition, the prospects for potential applications of emerging technologies (i.e., sensors, computer vision, machine learning, and artificial intelligence) to assess rice quality and consumer preferences are discussed. The integration of these technologies shows promising potential in the forthcoming to be adopted by the rice industry to assess rice quality traits and consumer preferences at a lower cost, shorter time, and more objectively compared to the traditional approaches.
    Matched MeSH terms: Artificial Intelligence
  2. Xu S, Deo RC, Soar J, Barua PD, Faust O, Homaira N, et al.
    Comput Methods Programs Biomed, 2023 Nov;241:107746.
    PMID: 37660550 DOI: 10.1016/j.cmpb.2023.107746
    BACKGROUND AND OBJECTIVE: Obstructive airway diseases, including asthma and Chronic Obstructive Pulmonary Disease (COPD), are two of the most common chronic respiratory health problems. Both of these conditions require health professional expertise in making a diagnosis. Hence, this process is time intensive for healthcare providers and the diagnostic quality is subject to intra- and inter- operator variability. In this study we investigate the role of automated detection of obstructive airway diseases to reduce cost and improve diagnostic quality.

    METHODS: We investigated the existing body of evidence and applied Preferred Reporting Items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to search records in IEEE, Google scholar, and PubMed databases. We identified 65 papers that were published from 2013 to 2022 and these papers cover 67 different studies. The review process was structured according to the medical data that was used for disease detection. We identified six main categories, namely air flow, genetic, imaging, signals, and miscellaneous. For each of these categories, we report both disease detection methods and their performance.

    RESULTS: We found that medical imaging was used in 14 of the reviewed studies as data for automated obstructive airway disease detection. Genetics and physiological signals were used in 13 studies. Medical records and air flow were used in 9 and 7 studies, respectively. Most papers were published in 2020 and we found three times more work on Machine Learning (ML) when compared to Deep Learning (DL). Statistical analysis shows that DL techniques achieve higher Accuracy (ACC) when compared to ML. Convolutional Neural Network (CNN) is the most common DL classifier and Support Vector Machine (SVM) is the most widely used ML classifier. During our review, we discovered only two publicly available asthma and COPD datasets. Most studies used private clinical datasets, so data size and data composition are inconsistent.

    CONCLUSIONS: Our review results indicate that Artificial Intelligence (AI) can improve both decision quality and efficiency of health professionals during COPD and asthma diagnosis. However, we found several limitations in this review, such as a lack of dataset consistency, a limited dataset and remote monitoring was not sufficiently explored. We appeal to society to accept and trust computer aided airflow obstructive diseases diagnosis and we encourage health professionals to work closely with AI scientists to promote automated detection in clinical practice and hospital settings.

    Matched MeSH terms: Artificial Intelligence
  3. Al-Worafi YM, Goh KW, Hermansyah A, Tan CS, Ming LC
    JMIR Med Educ, 2024 Jan 12;10:e47339.
    PMID: 38214967 DOI: 10.2196/47339
    BACKGROUND: Artificial Intelligence (AI) plays an important role in many fields, including medical education, practice, and research. Many medical educators started using ChatGPT at the end of 2022 for many purposes.

    OBJECTIVE: The aim of this study was to explore the potential uses, benefits, and risks of using ChatGPT in education modules on integrated pharmacotherapy of infectious disease.

    METHODS: A content analysis was conducted to investigate the applications of ChatGPT in education modules on integrated pharmacotherapy of infectious disease. Questions pertaining to curriculum development, syllabus design, lecture note preparation, and examination construction were posed during data collection. Three experienced professors rated the appropriateness and precision of the answers provided by ChatGPT. The consensus rating was considered. The professors also discussed the prospective applications, benefits, and risks of ChatGPT in this educational setting.

    RESULTS: ChatGPT demonstrated the ability to contribute to various aspects of curriculum design, with ratings ranging from 50% to 92% for appropriateness and accuracy. However, there were limitations and risks associated with its use, including incomplete syllabi, the absence of essential learning objectives, and the inability to design valid questionnaires and qualitative studies. It was suggested that educators use ChatGPT as a resource rather than relying primarily on its output. There are recommendations for effectively incorporating ChatGPT into the curriculum of the education modules on integrated pharmacotherapy of infectious disease.

    CONCLUSIONS: Medical and health sciences educators can use ChatGPT as a guide in many aspects related to the development of the curriculum of the education modules on integrated pharmacotherapy of infectious disease, syllabus design, lecture notes preparation, and examination preparation with caution.

    Matched MeSH terms: Artificial Intelligence
  4. Gudigar A, Kadri NA, Raghavendra U, Samanth J, Maithri M, Inamdar MA, et al.
    Comput Biol Med, 2024 Apr;172:108207.
    PMID: 38489986 DOI: 10.1016/j.compbiomed.2024.108207
    Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.
    Matched MeSH terms: Artificial Intelligence
  5. Yousefpanah K, Ebadi MJ, Sabzekar S, Zakaria NH, Osman NA, Ahmadian A
    Acta Trop, 2024 Sep;257:107277.
    PMID: 38878849 DOI: 10.1016/j.actatropica.2024.107277
    Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.
    Matched MeSH terms: Artificial Intelligence
  6. Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, et al.
    Sensors (Basel), 2021 Dec 01;21(23).
    PMID: 34884045 DOI: 10.3390/s21238045
    The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
    Matched MeSH terms: Artificial Intelligence
  7. Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, et al.
    Biosens Bioelectron, 2023 Jan 15;220:114847.
    PMID: 36335709 DOI: 10.1016/j.bios.2022.114847
    Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
    Matched MeSH terms: Artificial Intelligence
  8. Al-Dabbagh MM, Salim N, Rehman A, Alkawaz MH, Saba T, Al-Rodhaan M, et al.
    ScientificWorldJournal, 2014;2014:612787.
    PMID: 25309952 DOI: 10.1155/2014/612787
    This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
    Matched MeSH terms: Artificial Intelligence*
  9. Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR
    BMC Bioinformatics, 2014;15:134.
    PMID: 24885721 DOI: 10.1186/1471-2105-15-134
    Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host, etc., protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years of research on the matter, no comprehensive review is available on the published methods.
    Matched MeSH terms: Artificial Intelligence*
  10. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:238234.
    PMID: 24883361 DOI: 10.1155/2014/238234
    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.
    Matched MeSH terms: Artificial Intelligence*
  11. Taha AM, Mustapha A, Chen SD
    ScientificWorldJournal, 2013;2013:325973.
    PMID: 24396295 DOI: 10.1155/2013/325973
    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.
    Matched MeSH terms: Artificial Intelligence*
  12. Mueen A, Zainuddin R, Baba MS
    J Med Syst, 2010 Oct;34(5):859-64.
    PMID: 20703623 DOI: 10.1007/s10916-009-9300-y
    The next generation of medical information system will integrate multimedia data to assist physicians in clinical decision-making, diagnoses, teaching, and research. This paper describes MIARS (Medical Image Annotation and Retrieval System). MIARS not only provides automatic annotation, but also supports text based as well as image based retrieval strategies, which play important roles in medical training, research, and diagnostics. The system utilizes three trained classifiers, which are trained using training images. The goal of these classifiers is to provide multi-level automatic annotation. Another main purpose of the MIARS system is to study image semantic retrieval strategy by which images can be retrieved according to different levels of annotation.
    Matched MeSH terms: Artificial Intelligence*
  13. Cheah YN, Abidi SS
    PMID: 11187669
    The healthcare enterprise requires a great deal of knowledge to maintain premium efficiency in the delivery of quality healthcare. We employ Knowledge Management based knowledge acquisition strategies to procure 'tacit' healthcare knowledge from experienced healthcare practitioners. Situational, problem-specific Scenarios are proposed as viable knowledge acquisition and representation constructs. We present a healthcare Tacit Knowledge Acquisition Info-structure (TKAI) that allows remote healthcare practitioners to record their tacit knowledge. TKAI employs (a) ontologies for standardisation of tacit knowledge and (b) XML to represent scenario instances for their transfer over the Internet to the server-side Scenario-Base and for the global sharing of acquired tacit healthcare knowledge.
    Matched MeSH terms: Artificial Intelligence*
  14. Abidi SS, Manickam S
    PMID: 11187645
    Electronic patient records (EPR) can be regarded as an implicit source of clinical behaviour and problem-solving knowledge, systematically compiled by clinicians. We present an approach, together with its computational implementation, to pro-actively transform XML-based EPR into specialised Clinical Cases (CC) in the realm of Medical Case Base Systems. The 'correct' transformation of EPR to CC involves structural, terminological and conceptual standardisation, which is achieved by a confluence of techniques and resources, such as XML, UMLS (meta-thesaurus) and medical knowledge ontologies. We present below the functional architecture of a Medical Case-Base Reasoning Info-Structure (MCRIS) that features two distinct, yet related, functionalities: (1) a generic medical case-based reasoning system for decision-support activities; and (2) an EPR-CC transformation system to transform typical EPR's to CC.
    Matched MeSH terms: Artificial Intelligence*
  15. Alanazi HO, Abdullah AH, Qureshi KN
    J Med Syst, 2017 Apr;41(4):69.
    PMID: 28285459 DOI: 10.1007/s10916-017-0715-6
    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
    Matched MeSH terms: Artificial Intelligence*
  16. Karobari MI, Adil AH, Basheer SN, Murugesan S, Savadamoorthi KS, Mustafa M, et al.
    Comput Math Methods Med, 2023;2023:7049360.
    PMID: 36761829 DOI: 10.1155/2023/7049360
    AIM: This comprehensive review is aimed at evaluating the diagnostic and prognostic accuracy of artificial intelligence in endodontic dentistry.

    INTRODUCTION: Artificial intelligence (AI) is a relatively new technology that has widespread use in dentistry. The AI technologies have primarily been used in dentistry to diagnose dental diseases, plan treatment, make clinical decisions, and predict the prognosis. AI models like convolutional neural networks (CNN) and artificial neural networks (ANN) have been used in endodontics to study root canal system anatomy, determine working length measurements, detect periapical lesions and root fractures, predict the success of retreatment procedures, and predict the viability of dental pulp stem cells. Methodology. The literature was searched in electronic databases such as Google Scholar, Medline, PubMed, Embase, Web of Science, and Scopus, published over the last four decades (January 1980 to September 15, 2021) by using keywords such as artificial intelligence, machine learning, deep learning, application, endodontics, and dentistry.

    RESULTS: The preliminary search yielded 2560 articles relevant enough to the paper's purpose. A total of 88 articles met the eligibility criteria. The majority of research on AI application in endodontics has concentrated on tracing apical foramen, verifying the working length, projection of periapical pathologies, root morphologies, and retreatment predictions and discovering the vertical root fractures.

    CONCLUSION: In endodontics, AI displayed accuracy in terms of diagnostic and prognostic evaluations. The use of AI can help enhance the treatment plan, which in turn can lead to an increase in the success rate of endodontic treatment outcomes. The AI is used extensively in endodontics and could help in clinical applications, such as detecting root fractures, periapical pathologies, determining working length, tracing apical foramen, the morphology of root, and disease prediction.

    Matched MeSH terms: Artificial Intelligence*
  17. Li C, Yang M, Zhang Y, Lai KW
    Int J Environ Res Public Health, 2022 Nov 14;19(22).
    PMID: 36429697 DOI: 10.3390/ijerph192214976
    PURPOSE: Mental health assessments that combine patients' facial expressions and behaviors have been proven effective, but screening large-scale student populations for mental health problems is time-consuming and labor-intensive. This study aims to provide an efficient and accurate intelligent method for further psychological diagnosis and treatment, which combines artificial intelligence technologies to assist in evaluating the mental health problems of college students.

    MATERIALS AND METHODS: We propose a mixed-method study of mental health assessment that combines psychological questionnaires with facial emotion analysis to comprehensively evaluate the mental health of students on a large scale. The Depression Anxiety and Stress Scale-21(DASS-21) is used for the psychological questionnaire. The facial emotion recognition model is implemented by transfer learning based on neural networks, and the model is pre-trained using FER2013 and CFEE datasets. Among them, the FER2013 dataset consists of 48 × 48-pixel face gray images, a total of 35,887 face images. The CFEE dataset contains 950,000 facial images with annotated action units (au). Using a random sampling strategy, we sent online questionnaires to 400 college students and received 374 responses, and the response rate was 93.5%. After pre-processing, 350 results were available, including 187 male and 153 female students. First, the facial emotion data of students were collected in an online questionnaire test. Then, a pre-trained model was used for emotion recognition. Finally, the online psychological questionnaire scores and the facial emotion recognition model scores were collated to give a comprehensive psychological evaluation score.

    RESULTS: The experimental results of the facial emotion recognition model proposed to show that its classification results are broadly consistent with the mental health survey results. This model can be used to improve efficiency. In particular, the accuracy of the facial emotion recognition model proposed in this paper is higher than that of the general mental health model, which only uses the traditional single questionnaire. Furthermore, the absolute errors of this study in the three symptoms of depression, anxiety, and stress are lower than other mental health survey results and are only 0.8%, 8.1%, 3.5%, and 1.8%, respectively.

    CONCLUSION: The mixed method combining intelligent methods and scales for mental health assessment has high recognition accuracy. Therefore, it can support efficient large-scale screening of students' psychological problems.

    Matched MeSH terms: Artificial Intelligence*
  18. Suriani NS, Hussain A, Zulkifley MA
    Sensors (Basel), 2013 Aug 05;13(8):9966-98.
    PMID: 23921828 DOI: 10.3390/s130809966
    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
    Matched MeSH terms: Artificial Intelligence*
  19. Albahri OS, Zaidan AA, Albahri AS, Zaidan BB, Abdulkareem KH, Al-Qaysi ZT, et al.
    J Infect Public Health, 2020 Oct;13(10):1381-1396.
    PMID: 32646771 DOI: 10.1016/j.jiph.2020.06.028
    This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.
    Matched MeSH terms: Artificial Intelligence/standards*
  20. Pathan RK, Biswas M, Yasmin S, Khandaker MU, Salman M, Youssef AAF
    Sci Rep, 2023 Oct 09;13(1):16975.
    PMID: 37813932 DOI: 10.1038/s41598-023-43852-x
    Sign Language Recognition is a breakthrough for communication among deaf-mute society and has been a critical research topic for years. Although some of the previous studies have successfully recognized sign language, it requires many costly instruments including sensors, devices, and high-end processing power. However, such drawbacks can be easily overcome by employing artificial intelligence-based techniques. Since, in this modern era of advanced mobile technology, using a camera to take video or images is much easier, this study demonstrates a cost-effective technique to detect American Sign Language (ASL) using an image dataset. Here, "Finger Spelling, A" dataset has been used, with 24 letters (except j and z as they contain motion). The main reason for using this dataset is that these images have a complex background with different environments and scene colors. Two layers of image processing have been used: in the first layer, images are processed as a whole for training, and in the second layer, the hand landmarks are extracted. A multi-headed convolutional neural network (CNN) model has been proposed and tested with 30% of the dataset to train these two layers. To avoid the overfitting problem, data augmentation and dynamic learning rate reduction have been used. With the proposed model, 98.981% test accuracy has been achieved. It is expected that this study may help to develop an efficient human-machine communication system for a deaf-mute society.
    Matched MeSH terms: Artificial Intelligence*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links