Displaying publications 121 - 135 of 135 in total

Abstract:
Sort:
  1. Ramasamy, R., Krishna, K., Maqbool, M., Vellasamy, S., Sarmadi, V. H., Abdullah, M., et al.
    MyJurnal
    Objective: Mesenchymal stem cells (MSC) are multipotent, non-haematopoietic stem cells that are
    capable of differentiating into different varieties of mature cell types such as osteoblasts, chondrocytes, adipocytes, and myoblasts. There is abundant evidence showing that MSC not only affect the differentiation of haematopoietic progenitors, but also the function of mature cells like lymphocytes and neutrophils. However the effect of MSC on neutrophil function and its responses is not well studied. Therefore, this study was conducted to assess the effect of MSC on neutrophil nitric oxide production. Method: Neutrophils from heparanised venous blood were isolated using Ficoll-Hypaque density gradient centrifugation followed by Dextran sedimentation and red blood cell (RBC) lysis. Isolated neutrophils were on average of 97% purity as determined by morphologic analysis. MSC were generated from human bone marrow and characterised by immunophenotyping (monoclonal antibodies CD105, CD73 and CD34) using a flowcytometer. In order to test the effects of MSC on neutrophil function, isolated neutrophils were co-cultured in the presence or absence of MSC at different ratios for 24 and 48 hours. The amount of nitric oxide released was used as an indication of oxidative burst and measured using the Griess assay. Result: The results indicate that MSC neither elevate the NO level when cocultured with resting neutrophils nor alone. However MSC profoundly inhibit the secretion of nitric oxide in PMA stimulated neutrophils after 24hr of incubation. Conclusion: MSC exert an immunomodulatory effect on neutrophil by suppressing neutrophil oxidative burst in vitro.
    Matched MeSH terms: Osteoblasts
  2. Megat Abdul Wahab R, Mohamed Rozali NA, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z, Zainal Ariffin SH
    PeerJ, 2017;5:e3180.
    PMID: 28626603 DOI: 10.7717/peerj.3180
    BACKGROUND: Stem cells are normally isolated from dental pulps using the enzymatic digestion or the outgrowth method. However, the effects of the isolation method on the quality of the isolated stem cells are not studied in detail in murine models. The aim of this study was to compare the matrices secreted by osteoblast and chondrocytes differentiated from dental pulp stem cells isolated through different means.

    METHOD: DPSC from murine incisors were isolated through either the outgrowth (DPSC-OG) or the enzymatic digestion (DPSC-ED) method. Cells at passage 4 were used in this study. The cells were characterized through morphology and expression of cell surface markers. The cells' doubling time when cultured using different seeding densities was calculated and analyzed using one-way ANOVA and Tukey's multiple comparison post-test. The ability of cells to differentiate to chondrocyte and osteoblast was evaluated through staining and analysis on the matrices secreted.

    RESULTS: Gene expression analysis showed that DPSC-OG and DPSC-ED expressed dental pulp mesenchymal stem cell markers, but not hematopoietic stem cell markers. The least number of cells that could have been used to culture DPSC-OG and DPSC-ED with the shortest doubling time was 5 × 10(2) cells/cm(2) (11.49 ± 2.16 h) and 1 × 10(2) cells/cm(2) (10.55 h ± 0.50), respectively. Chondrocytes differentiated from DPSC-ED produced  2 times more proteoglycan and at a faster rate than DPSC-OG. FTIR revealed that DPSC-ED differentiated into osteoblast also secreted matrix, which more resembled a calvaria.

    DISCUSSION: Isolation approaches might have influenced the cell populations obtained. This, in turn, resulted in cells with different proliferation and differentiation capability. While both DPSC-OG and DPSC-ED expressed mesenchymal stem cell markers, the percentage of cells carrying each marker might have differed between the two methods. Regardless, enzymatic digestion clearly yielded cells with better characteristics than outgrowth.

    Matched MeSH terms: Osteoblasts
  3. Abdullah AR, Hapidin H, Abdullah H
    PMID: 29861772 DOI: 10.1155/2018/5319528
    Background. Quercus infectoria (QI) is a plant used in traditional medicines in Asia. The plant was reported to contain various active phytochemical compounds that have potential to stimulate bone formation. However, the precise mechanism of the stimulation effect of QI on osteoblast has not been elucidated. The present study was carried out to isolate QI semipurified fractions from aqueous QI extract and to delineate the molecular mechanism of QI semipurified fraction that enhanced bone formation by using hFOB1.19 human fetal osteoblast cell model. Methods. Isolation of QI semipurified fractions was established by means of column chromatography and thin layer chromatography. Established QI semipurified fractions were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). Cells were treated with derived QI semipurified fractions and investigated for mineralization deposition and protein expression level of BMP-2, Runx2, and OPN by ELISA followed gene expression analysis of BMP-2 and Runx2 by RT-PCR. Results. Column chromatography isolation and purification yield Fractions A, B, and C. LC-MS analysis reveals the presence of polyphenols in each fraction. Results show that QI semipurified fractions increased the activity and upregulated the gene expression of BMP-2 and Runx2 at day 1, day 3, and day 7. OPN activity increased in cells treated with QI semipurified fractions at day 1 and day 3. Meanwhile, at day 7, expression of OPN decreased in activity. Furthermore, the study showed that combination of Fractions A, B, and C with osteoporotic drug (pamidronate) further increased the activity and upregulated the gene expression of BMP-2 and Runx2. Conclusions. These findings demonstrated that polyphenols from semipurified fractions of QI enhanced bone formation through expression of the investigated bone-related marker that is its potential role when combined with readily available osteoporotic drug.
    Matched MeSH terms: Osteoblasts
  4. Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN
    PMID: 23118785 DOI: 10.1155/2012/161527
    Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV) and trabecular number (Tb.N) and an increase in trabecular separation (Tb.S). The increase in osteoclast surface (Oc.S) and osteoblast surface (Ob.S) in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.
    Matched MeSH terms: Osteoblasts
  5. Mohd Effendy N, Mohamed N, Muhammad N, Mohamad IN, Shuid AN
    PMID: 22973408 DOI: 10.1155/2012/938574
    Osteoporosis which is characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility can be associated with various stimuli such as oxidative stress and inflammation. Postmenopausal women are more prone to osteoporosis due to reduction in estrogen which may further lead to elevation of oxidative stress and lipid accumulation which will promote osteoblasts apoptosis. Proinflammatory cytokines are elevated following estrogen deficiency. These cytokines are important determinants of osteoclasts differentiation and its bone resorption activity. The main treatment for postmenopausal osteoporosis is estrogen replacement therapy (ERT). Despite its effectiveness, ERT, however, can cause many adverse effects. Therefore, alternative treatment that is rich in antioxidant and can exert an anti-inflammatory effect can be given to replace the conventional ERT. Tualang honey is one of the best options available as it contains antioxidant as well as exerting anti-inflammatory effect which can act as a free radical scavenger, reducing the oxidative stress level as well as inhibiting proinflammatory cytokine. This will result in survival of osteoblasts, reduced osteoclastogenic activity, and consequently, reduce bone loss. Hence, Tualang honey can be used as an alternative treatment of postmenopausal osteoporosis with minimal side effects.
    Matched MeSH terms: Osteoblasts
  6. Sosroseno W, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2009 Feb;24(1):50-5.
    PMID: 19121070 DOI: 10.1111/j.1399-302X.2008.00475.x
    Human osteoblasts induced by inflammatory stimuli express an inducible nitric oxide synthase (iNOS). The aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans lipopolysaccharide stimulates the production of nitric oxide (NO) by a human osteoblast-like cell line (HOS cells).
    Matched MeSH terms: Osteoblasts/metabolism*
  7. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
    Matched MeSH terms: Osteoblasts/cytology*
  8. Sosroseno W, Sugiatno E
    Acta Biomed, 2008 Aug;79(2):110-6.
    PMID: 18788505
    BACKGROUND AND AIMS OF THE WORK: Nitric oxide (NO) has been reported to enhance the production of cAMP by hydroxyapatite (HA)-induced a human osteoblast cell line (HOS cells). The aim of the present study was to test the hypothesis that exogenous NO may up-regulate the proliferation of hydroxyapatite (HA)-induced HOS cells via the cyclic-AMP-protein kinase A (PKA) pathway.
    Matched MeSH terms: Osteoblasts/drug effects*
  9. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Osteoblasts/drug effects
  10. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Osteoblasts/drug effects
  11. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim F
    J Oral Implantol, 2008;34(4):196-202.
    PMID: 18780564 DOI: 10.1563/0.910.1
    The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin alphaV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin alphaV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin alphaV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
    Matched MeSH terms: Osteoblasts/drug effects*
  12. Nurul, A.A., Tan, S.J., Asiah, A.B., Norliana, G., Nor Shamsuria, O., Nurul, A.S.
    MyJurnal
    Introduction: Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic cells capable of differentiating into osteoblasts and inducing bone formation. It is a potential alternative for stem cell bone regeneration therapy. However, stem cell therapy carries the risk of immune rejection mediated by inflammatory cytokines of the human defense system. Objective: This preliminary research studies the interaction between SHED and the immune system by determining the inflammatory cytokines profile and osteogenic potential of SHED. Methods: Human fetal osteoblasts (hFOb) cell line and isolated SHED were cultured and total RNA was extracted, followed by reverse transcription cDNA synthesis. Semi-quantitative reverse transcription PCR and Multiplex PCR were performed to detect the expression levels of OPG/RANKL and TNF-α, IL-1β, IL-6, IL-8 and TGF-β in both cell types. Results: Analysis showed that SHED expressed significantly lower amounts of IL-1β, IL-6, and IL-8 compared to hFOB. IL-1β is a potent bone-resorbing factor, while IL-6 and IL-8 induce osteoclastogenesis and osteolysis respectively. SHED did not express TNF-α which stimulates osteoclastic activity. SHED demonstrated high OPG/RANKL ratio, in contrast with that of marrow stem cells described in previous studies. Our findings suggest that SHED may have improved immunomodulatory profile in terms of promoting relatively lower inflammatory reaction during transplant and enhancing bone regeneration. Conclusion: SHED has a potential to be a good source of osteoblasts for bone regeneration therapy. Further studies on the immunomodulatory properties of SHED-derived osteoblasts are necessary to enable stem cell therapy in immunocompetent hosts.
    Matched MeSH terms: Osteoblasts
  13. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Osteoblasts/cytology; Osteoblasts/metabolism
  14. Bhattamisra SK, Koh HM, Lim SY, Choudhury H, Pandey M
    Biomolecules, 2021 02 20;11(2).
    PMID: 33672590 DOI: 10.3390/biom11020323
    Catalpol isolated from Rehmannia glutinosa is a potent antioxidant and investigated against many disorders. This review appraises the key molecular pathways of catalpol against diabetes mellitus and its complications. Multiple search engines including Google Scholar, PubMed, and Science Direct were used to retrieve publications containing the keywords "Catalpol", "Type 1 diabetes mellitus", "Type 2 diabetes mellitus", and "diabetic complications". Catalpol promotes IRS-1/PI3K/AKT/GLUT2 activity and suppresses Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase) expression in the liver. Catalpol induces myogenesis by increasing MyoD/MyoG/MHC expression and improves mitochondria function through the AMPK/PGC-1α/PPAR-γ and TFAM signaling in skeletal muscles. Catalpol downregulates the pro-inflammatory markers and upregulates the anti-inflammatory markers in adipose tissues. Catalpol exerts antioxidant properties through increasing superoxide dismutase (sod), catalase (cat), and glutathione peroxidase (gsh-px) activity in the pancreas and liver. Catalpol has been shown to have anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis properties that in turn bring beneficial effects in diabetic complications. Its nephroprotective effect is related to the modulation of the AGE/RAGE/NF-κB and TGF-β/smad2/3 pathways. Catalpol produces a neuroprotective effect by increasing the expression of protein Kinase-C (PKC) and Cav-1. Furthermore, catalpol exhibits a cardioprotective effect through the apelin/APJ and ROS/NF-κB/Neat1 pathway. Catalpol stimulates proliferation and differentiation of osteoblast cells in high glucose condition. Lastly, catalpol shows its potential in preventing neurodegeneration in the retina with NF-κB downregulation. Overall, catalpol exhibits numerous beneficial effects on diabetes mellitus and diabetic complications.
    Matched MeSH terms: Osteoblasts
  15. Bakhsh A, Mustapha NM, Mohamed S
    Nutrition, 2013 Apr;29(4):667-72.
    PMID: 23290096 DOI: 10.1016/j.nut.2012.09.005
    Postmenopausal estrogen deficiency often causes bone density loss and osteoporosis. This study evaluated the effects of an oral administration of oil palm leaf extract (OPL) on bone calcium content and structure, bone density, ash weights, and serum total alkaline phosphatase (T-ALP) of estrogen-deficient ovariectomized (OVX) rats.
    Matched MeSH terms: Osteoblasts/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links