Displaying publications 121 - 140 of 197 in total

Abstract:
Sort:
  1. Matejcic M, Saunders EJ, Dadaev T, Brook MN, Wang K, Sheng X, et al.
    Nat Commun, 2018 Nov 05;9(1):4616.
    PMID: 30397198 DOI: 10.1038/s41467-018-06863-1
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p 
    Matched MeSH terms: Prostatic Neoplasms/genetics*; Prostatic Neoplasms/epidemiology; Prostatic Neoplasms/pathology
  2. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
    Matched MeSH terms: Prostatic Neoplasms/genetics*
  3. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
    Matched MeSH terms: Prostatic Neoplasms/diagnosis; Prostatic Neoplasms/genetics*
  4. Jaafaru MS, Abd Karim NA, Mohamed Eliaser E, Maitalata Waziri P, Ahmed H, Mustapha Barau M, et al.
    Nutrients, 2018 Aug 27;10(9).
    PMID: 30150582 DOI: 10.3390/nu10091174
    The incidence of prostate cancer malignancy along with other cancer types is increasing worldwide, resulting in high mortality rate due to lack of effective medications. Moringa oleifera has been used for the treatment of communicable and non-communicable ailments across tropical countries, yet, little has been documented regarding its effect on prostate cancer. We evaluated the acute toxicity and apoptosis inducing effect of glucomoringin-isothiocyanate rich soluble extracts (GMG-ITC-RSE) from M. oleifera in vivo and in vitro, respectively. Glucomoringin was isolated, identified, and characterized using fundamental analytical chemistry tools where Sprague-Dawley (SD) rats, murine fibroblast (3T3), and human prostate adenocarcinoma cells (PC-3) were used for acute toxicity and bioassays experiments. GMG-ITC-RSE did not instigate adverse toxic reactions to the animals even at high doses (2000 mg/kg body weight) and affected none of the vital organs in the rats. The extract exhibited high levels of safety in 3T3 cells, where more than 90% of the cells appeared viable when treated with the extract in a time-dependent manner even at high dose (250 µg/mL). GMG-ITC-RSE significantly triggered morphological aberrations distinctive to apoptosis observed under microscope. These findings obviously revealed the putative safety of GMG-ITC-RSE in vivo and in vitro, in addition to its anti-proliferative effect on PC-3 cells.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*; Prostatic Neoplasms/pathology
  5. Abd Wahab NA, Lajis NH, Abas F, Othman I, Naidu R
    Nutrients, 2020 Mar 02;12(3).
    PMID: 32131560 DOI: 10.3390/nu12030679
    Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*; Prostatic Neoplasms/metabolism; Prostatic Neoplasms/mortality; Prostatic Neoplasms/pathology
  6. Jacob SA, Khan TM, Lee LH
    Nutr Cancer, 2017 Apr;69(3):353-364.
    PMID: 28287319 DOI: 10.1080/01635581.2017.1285037
    This systematic review aimed to assess the clinical benefits of green tea consumption on the progression and prevention of prostate cancer (PCa). A systematic search was performed across the following databases: PubMed, Excerpta Medica dataBASE, Database of Abstracts of Reviews of Effects, Current Nursing and Allied Health Literature, Allied and Complementary Medicine Database, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials. We included studies from database inception to September 2015. Studies must report on the effect of green tea consumption on PCa. The quality of observational studies was assessed using the Newcastle-Ottawa Scale (NOS), while randomized controlled trials (RCTs) were assessed for quality using the Jadad scale. A total of 15 articles were included, with 11 reporting on the effect of green tea consumption on PCa prevention, and four reporting on the effect of green tea on treatment. Mean NOS for observational studies was 7.4 (SD±1.3), with a range from 6 to 9, while all three RCTs scored 5 on the Jadad scale. Findings demonstrate that green tea appears to be an effective chemopreventive agent, particularly in those with high-grade prostate intraepithelial neoplasia. However, evidence of efficacy in the treatment of PCa is currently lacking. Given the limitations in current studies, more well-designed RCTs should be undertaken to determine if green tea indeed has a role in the prevention and treatment of PCa.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*; Prostatic Neoplasms/prevention & control*
  7. Loveridge CJ, Slater S, Campbell KJ, Nam NA, Knight J, Ahmad I, et al.
    Oncogene, 2020 02;39(8):1797-1806.
    PMID: 31740786 DOI: 10.1038/s41388-019-1106-x
    BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (PtenΔ/Δ BRF1Tg) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In PtenΔ/Δ BRF1Tg tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.
    Matched MeSH terms: Prostatic Neoplasms/diagnosis; Prostatic Neoplasms/immunology*; Prostatic Neoplasms/metabolism; Prostatic Neoplasms/pathology*
  8. Wong PF, Abubakar S
    Oncol Rep, 2010 Jun;23(6):1501-16.
    PMID: 20428803
    The normally high concentration of zinc in normal prostate gland is significantly reduced in malignant prostate tissues, but its precise role in prostate tumorigenesis remains unclear. The present study investigates the growth and transcriptional responses of LNCaP prostate cancer cells to prolonged high Zn2+ treatment. Restoration of high intracellular Zn2+ to LNCaP cells significantly reduced the cell proliferation rate by 42.2+/-7.4% at the exponential growth phase and the efficiency of colony formation on soft agar by 87.2+/-2.5% at week 5 post-treatment. At least 161 LNCaP cell genes responded to the high intracellular Zn2+, including approximately 10.6% genes that negatively regulate cell growth and approximately 16.1% genes that promote cancer cell proliferation. Inhibition of cell growth was transient as normal proliferation rate and colony formation efficiency were restored later even in the continuous presence of high intracellular Zn2+. RT-qPCR showed constitutively higher expression levels of FBL, CD164 and STEAP1 in LNCaP cells. FBL and CD164 were responsive to the treatment with Zn2+ in PNT2 prostate normal cells and were further overexpressed in the prolonged Zn2+-treated LNCaP cells. These observations suggest that in general high Zn2+ has suppressive effects on prostate cancer cell growth but continuous exposure to an environment of high Zn2+ can lead to the overexpression of cancer promoting genes such as FBL and CD164. This could be the antagonistic mechanism used to overcome the initial cell growth inhibitory effects of high Zn2+. These findings support a potential detrimental role of Zn2+ in prostate cancer.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy; Prostatic Neoplasms/metabolism*
  9. Khan S, Zakariah M, Rolfo C, Robrecht L, Palaniappan S
    Oncotarget, 2017 May 09;8(19):30830-30843.
    PMID: 27027344 DOI: 10.18632/oncotarget.8306
    Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Matched MeSH terms: Prostatic Neoplasms/etiology*; Prostatic Neoplasms/metabolism*; Prostatic Neoplasms/pathology
  10. Wei R, Lim CY, Yang Y, Tang XD, Yan TQ, Yang RL, et al.
    Orthop Surg, 2021 Apr;13(2):553-562.
    PMID: 33665985 DOI: 10.1111/os.12918
    OBJECTIVES: This study aims to: (i) evaluate the outcome of patients with Harrington class III lesions who were treated according to Harrington classification; (ii) propose a modified surgical classification for Harrington class III lesions; and (iii) assess the efficiency of the proposed modified classification.

    METHODS: This study composes two phases. During phase 1 (2006 to 2011), the clinical data of 16 patients with Harrington class III lesions who were treated by intralesional excision followed by reconstruction of antegrade/retrograde Steinmann pins/screws with cemented total hip arthroplasty (Harrington/modified Harrington procedure) were retrospectively reviewed and further analyzed synthetically to design a modified surgical classification system. In phase 2 (2013 to 2019), 62 patients with Harrington class III lesions were classified and surgically treated according to our modified classification. Functional outcome was assessed using the Musculoskeletal Tumor Society (MSTS) 93 scoring system. The outcome of local control was described using 2-year recurrence-free survival (RFS). Owing to the limited sample size, we considered P 

    Matched MeSH terms: Prostatic Neoplasms
  11. Saw S, Aw TC
    Pathology, 2000 Nov;32(4):245-9.
    PMID: 11186419
    Cancer of the prostate is the sixth most frequently found cancer in Singapore. Prostate-specific antigen (PSA) is the most clinically useful tumour marker available today for the diagnosis and management of prostate cancer. To enhance the value of PSA as a screening test we developed age-specific intervals for our ethnic population. The measurement of free PSA was included in the study to calculate the free:total ratio which enhances the differential diagnosis of prostate cancer from benign prostatic hyperplasia or prostatitis. The total PSA upper limits of 10-year intervals, beginning at 30-years-old, were 1.4, 1.7, 2.3, 4.0, 6.3 and 6.6 microg/l. Free PSA cut-off limits were 0.4, 0.5, 0.5, 1.0, 1.5 and 1.6 microg/l. The free:total ratio of PSA was not age dependent. Abbott AxSym standardised their calibration material for both free and total PSA assays with the Stanford 90:10 reference material. This laboratory has implemented these age-specific reference intervals and are currently following up their pick-up rate in the detection of prostate cancer.
    Matched MeSH terms: Prostatic Neoplasms/prevention & control*
  12. Dheeb Albashish, Shahnorbanun Sahran, Azizi Abdullah, Nordashima Abd Shukor, Suria Hayati Md Pauzi
    MyJurnal
    The Gleason grading system assists in evaluating the prognosis of men with prostate cancer. Cancers with a higher score are more aggressive and have a worse prognosis. The pathologists observe the tissue components (e.g. lumen, nuclei) of the histopathological image to grade it. The differentiation between Grade 3 and Grade 4 is the most challenging, and receives the most consideration from scholars. However, since the grading is subjective and time-consuming, a reliable computer-aided prostate cancer diagnosing techniques are in high demand. This study proposed an ensemble computer-added system (CAD) consisting of two single classifiers: a) a specialist, trained specifically for texture features of the lumen and the other for nuclei tissue component; b) a fusion method to aggregate the decision of the single classifiers. Experimental results show promising results that the proposed ensemble system (area under the ROC curve (Az) of 88.9% for Grade 3 versus Grad 4 classification task) impressively outperforms the single classifier of nuclei (Az=87.7) and lumen (Az=86.6).
    Matched MeSH terms: Prostatic Neoplasms
  13. Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, et al.
    Pharmaceutics, 2021 Mar 24;13(4).
    PMID: 33804975 DOI: 10.3390/pharmaceutics13040439
    1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-expressing prostate cancer cells. The NLC was prepared using the melt and high sheer homogenization method, and it exhibited ideal physico-chemical properties, successful encapsulation and modification, and sustained rate of drug release. Furthermore, it demonstrated time-based and improved cellular uptake, and improved cytotoxic and anti-metastatic properties on PC-3 cells in vitro. Additionally, the in vivo animal tumor model revealed significant anti-tumor efficacy and reduction in pro-tumorigenic markers in comparison to the placebo, without affecting the weight and physiological states of the nude mice. Overall, ACA-loaded NLC with AMD3100 surface modification was successfully prepared with evidence of substantial anti-cancer efficacy. These results suggest the potential use of AMD3100-modified NLCs as a targeting carrier for cytotoxic drugs towards CXCR4-expressing cancer cells.
    Matched MeSH terms: Prostatic Neoplasms
  14. Lee ST, Wong PF, Hooper JD, Mustafa MR
    Phytomedicine, 2013 Nov 15;20(14):1297-305.
    PMID: 23920276 DOI: 10.1016/j.phymed.2013.07.002
    Alpha (α)-tomatine, a major saponin found in tomato has been shown to inhibit the growth of androgen-independent prostate cancer PC-3 cells. The effects of α-tomatine in combination with the chemotherapeutic agent paclitaxel against PC-3 cells were investigated in the present study. Combined treatment with a sub-toxic dose of α-tomatine and paclitaxel significantly decreased cell viability with concomitant increase in the percentage of apoptotic PC-3 cells. The combined treatment, however, had no cytotoxic effect on the non-neoplastic prostate RWPE-1 cells. Apoptosis of PC-3 cells was accompanied by the inhibition of PI3K/Akt pro-survival signaling, an increase in the expression of the pro-apoptotic protein BAD but a decrease in the expressions of anti-apoptotic proteins, Bcl-2 and Bcl-xL. Results from a mouse xenograft model showed the combined treatment completely suppressed subcutaneous tumor growth without significant side effects. Consistent with its in vitro anti-cancer effects, tumor materials from mice showed increased apoptosis of tumor cells with reduced protein expression of activated PI3K/Akt. These results suggest that the synergistic anti-cancer effects of paclitaxel and α-tomatine may be beneficial for refractory prostate cancer treatment.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*; Prostatic Neoplasms/metabolism
  15. Lim J, Bhoo-Pathy N, Sothilingam S, Malek R, Sundram M, Hisham Bahadzor B, et al.
    PLoS One, 2014;9(8):e104917.
    PMID: 25111507 DOI: 10.1371/journal.pone.0104917
    OBJECTIVES: To study the baseline PSA profile and determine the factors influencing the PSA levels within a multiethnic Asian setting.
    MATERIALS AND METHODS: We conducted a cross-sectional study of 1054 men with no clinical evidence of prostate cancer, prostate surgery or 5α-reductase inhibitor treatment of known prostate conditions. The serum PSA concentration of each subject was assayed. Potential factors associated with PSA level including age, ethnicity, height, weight, family history of prostate cancer, lower urinary tract voiding symptoms (LUTS), prostate volume and digital rectal examination (DRE) were evaluated using univariable and multivariable analysis.
    RESULTS: There were 38 men (3.6%) found to have a PSA level above 4 ng/ml and 1016 (96.4%) with a healthy PSA (≤4 ng/ml). The median PSA level of Malay, Chinese and Indian men was 1.00 ng/ml, 1.16 ng/ml and 0.83 ng/ml, respectively. Indians had a relatively lower median PSA level and prostate volume than Malays and Chinese, who shared a comparable median PSA value across all 10-years age groups. The PSA density was fairly similar amongst all ethnicities. Further analysis showed that ethnicity, weight and prostate volume were independent factors associated with age specific PSA level in the multivariable analysis (p<0.05).
    CONCLUSION: These findings support the concept that the baseline PSA level varies between different ethnicities across all age groups. In addition to age and prostate volume, ethnicity may also need to be taken into account when investigating serum PSA concentrations in the multiethnic Asian population.
    Matched MeSH terms: Prostatic Neoplasms/blood; Prostatic Neoplasms/diagnosis
  16. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong WF, et al.
    PLoS One, 2014;9(2):e87286.
    PMID: 24551054 DOI: 10.1371/journal.pone.0087286
    In this study, a new apoptotic monoterpenoid indole alkaloid, subditine (1), and four known compounds were isolated from the bark of Nauclea subdita. Complete (1)H- and (13)C- NMR data of the new compound were reported. The structures of isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS. All five compounds were screened for cytotoxic activities on LNCaP and PC-3 human prostate cancer cell-lines. Among the five compounds, the new alkaloid, subditine (1), demonstrated the most potent cell growth inhibition activity and selective against LNCaP with an IC50 of 12.24±0.19 µM and PC-3 with an IC50 of 13.97±0.32 µM, compared to RWPE human normal epithelial cell line (IC50 = 30.48±0.08 µM). Subditine (1) treatment induced apoptosis in LNCaP and PC-3 as evidenced by increased cell permeability, disruption of cytoskeletal structures and increased nuclear fragmentation. In addition, subditine (1) enhanced intracellular reactive oxygen species (ROS) production, as reflected by increased expression of glutathione reductase (GR) to scavenge damaging free radicals in both prostate cancer cell-lines. Excessive ROS could lead to disruption of mitochondrial membrane potential (MMP), release of cytochrome c and subsequent caspase 9, 3/7 activation. Further Western blot analyses showed subditine (1) induced down-regulation of Bcl-2 and Bcl-xl expression, whereas p53 was up-regulated in LNCaP (p53-wild-type), but not in PC-3 (p53-null). Overall, our data demonstrated that the new compound subditine (1) exerts anti-proliferative effect on LNCaP and PC-3 human prostate cancer cells through induction of apoptosis.
    Matched MeSH terms: Prostatic Neoplasms/enzymology; Prostatic Neoplasms/genetics; Prostatic Neoplasms/pathology*
  17. Liong ML, Lim CR, Yang H, Chao S, Bong CW, Leong WS, et al.
    PLoS One, 2012;7(9):e45802.
    PMID: 23071848 DOI: 10.1371/journal.pone.0045802
    Prostate cancer is a bimodal disease with aggressive and indolent forms. Current prostate-specific-antigen testing and digital rectal examination screening provide ambiguous results leading to both under-and over-treatment. Accurate, consistent diagnosis is crucial to risk-stratify patients and facilitate clinical decision making as to treatment versus active surveillance. Diagnosis is currently achieved by needle biopsy, a painful procedure. Thus, there is a clinical need for a minimally-invasive test to determine prostate cancer aggressiveness. A blood sample to predict Gleason score, which is known to reflect aggressiveness of the cancer, could serve as such a test.
    Matched MeSH terms: Prostatic Neoplasms/blood; Prostatic Neoplasms/diagnosis*
  18. Lee ST, Wong PF, Cheah SC, Mustafa MR
    PLoS One, 2011;6(4):e18915.
    PMID: 21541327 DOI: 10.1371/journal.pone.0018915
    Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.
    Matched MeSH terms: Prostatic Neoplasms/enzymology; Prostatic Neoplasms/metabolism*; Prostatic Neoplasms/pathology*
  19. Tang YQ, Jaganath IB, Sekaran SD
    PLoS One, 2010;5(9):e12644.
    PMID: 20838625 DOI: 10.1371/journal.pone.0012644
    Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy; Prostatic Neoplasms/physiopathology*
  20. Lee ST, Wong PF, He H, Hooper JD, Mustafa MR
    PLoS One, 2013;8(2):e57708.
    PMID: 23437404 DOI: 10.1371/journal.pone.0057708
    Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*; Prostatic Neoplasms/genetics; Prostatic Neoplasms/metabolism; Prostatic Neoplasms/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links