METHODS: Characterization of the synthesized AuNPs was done by different techniques such as ultraviolet-visible spectrum absorption, X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive X-ray analysis.
RESULTS: All the results showed the successful green synthesis of AuNPs from Sx, which induced apoptosis of C666-1 cell line (NPC cell line). There was a decline in both cell viability and colony formation in C666-1 cells upon treatment with Sx-AuNPs. The cell death was proved to be caused by autophagy and mitochondrial-dependent apoptotic pathway.
CONCLUSION: Thus, due to their anticancer potential, these nanoparticles coupled with Sx can be used for in vivo applications and clinical research in future.
METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method.
RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of Bax and down-regulation of Bcl-2 protein. Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia.
CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
.
MATERIALS AND METHODS: This study introduced a simple and green synthesis of Fe3O4 NPs using a low-cost stabilizer of plant waste extract rich in polyphenols content with a well-known antioxidant property as well as anticancer ability to eliminate colon cancer cells. Herein, Fe3O4 NPs were fabricated via a facile co-precipitation method using the crude extract of Garcinia mangostana fruit peel as a green stabilizer at different weight percentages (1, 2, 5, and 10 wt.%). The samples were analyzed for magnetic hyperthermia and then in vitro cytotoxicity assay was performed.
RESULTS: The XRD planes of the samples were corresponding to the standard magnetite Fe3O4 with high crystallinity. From TEM analysis, the green synthesized NPs were spherical with an average size of 13.42±1.58 nm and displayed diffraction rings of the Fe3O4 phase, which was in good agreement with the obtained XRD results. FESEM images showed that the extract covered the surface of the Fe3O4 NPs well. The magnetization values for the magnetite samples were ranging from 49.80 emu/g to 69.42 emu/g. FTIR analysis verified the functional groups of the extract compounds and their interactions with the NPs. Based on DLS results, the hydrodynamic sizes of the Fe3O4 nanofluids were below 177 nm. Furthermore, the nanofluids indicated the zeta potential values up to -34.92±1.26 mV and remained stable during four weeks of storage, showing that the extract favorably improved the colloidal stability of the Fe3O4 NPs. In the hyperthermia experiment, the magnetic nanofluids showed the acceptable specific absorption rate (SAR) values and thermosensitive performances under exposure of various alternating magnetic fields. From results of in vitro cytotoxicity assay, the killing effects of the synthesized samples against HCT116 colon cancer cells were mostly higher compared to those against CCD112 colon normal cells. Remarkably, the Fe3O4 NPs containing 10 wt.% of the extract showed a lower IC50 value (99.80 µg/mL) in HCT116 colon cancer cell line than in CCD112 colon normal cell line (140.80 µg/mL).
DISCUSSION: This research, therefore, introduced a new stabilizer of Garcinia mangostana fruit peel extract for the biosynthesis of Fe3O4 NPs with desirable physiochemical properties for potential magnetic hyperthermia and colon cancer treatment.
MATERIALS AND METHODS: In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl4)/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl4. Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1H, 13C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract.
RESULTS: In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (p<0.05) potency. In cytotoxicity study, MEA extract was more toxic towards MCF-7 and DBTRG cell lines causing 78.7% and 64.3% cell death, respectively. MEA extract in 1H, 13C-NMR, and IR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents.
CONCLUSIONS: From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.
METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.
RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.
CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.
METHODS: For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N' terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect.
RESULTS: Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32-83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1-31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin's signature targeting activity.
CONCLUSIONS: Therefore, the critical stretch spanning amino acid 1-31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across cellular membrane, simultaneously promoting protein delivery for selective and effective breast cancer therapy.