Displaying publications 1481 - 1500 of 3311 in total

Abstract:
Sort:
  1. Kardia E, Halim NSSA, Yahaya BH
    Methods Mol Biol, 2016;1516:243-255.
    PMID: 27062596 DOI: 10.1007/7651_2016_327
    Aerosol-based cell delivery technique via intratracheal is an effective route for delivering transplant cells directly into the lungs. An aerosol device known as the MicroSprayer(®) Aerosolizer is invented to transform liquid into an aerosol form, which then can be applied via intratracheal administration for drug delivery. The device produces a uniform and concentrated distribution of aerosolized liquid. Using the capability of MicroSprayer(®) Aerosolizer to transform liquid into aerosol form, our group has designed a novel method of cell delivery using an aerosol-based technique. We have successfully delivered skin-derived fibroblast cells and airway epithelial cells into the airway of a rabbit with minimum risk of cell loss and have uniformly distributed the cells into the airway. This chapter illustrates the application of aerosol device to deliver any type of cells for future treatment of lung diseases.
    Matched MeSH terms: Epithelial Cells/drug effects*
  2. Asif M, Shafaei A, Jafari SF, Mohamed SB, Ezzat MO, Majid AS, et al.
    Toxicol Lett, 2016 Jun 3.
    PMID: 27268964 DOI: 10.1016/j.toxlet.2016.05.027
    Colorectal cancer (CRC) is one of the most common human malignant tumors worldwide. Arising from the transformation of epithelial cells in the colon and/or rectum into malignant cells, the foundation of CRC pathogenesis lies in the progressive accumulation of mutations in oncogenes and tumor-suppressor genes, such as APC and KRAS. Resistance to apoptosis is one of the key mechanisms in the development of CRC as it is for any other kind of cancer. Natural products have been shown to induce the expression of apoptosis regulators that are blocked in cancer cells. In the present study, a series of in vitro assays were employed to study the apoptosis inducing attributes of Isoledene rich sub-fraction (IR-SF) collected from the oleo-gum resin of M. ferrea. Data obtained, shows that IR-SF inhibited cell proliferation and induced typical apoptotic changes in the overall morphology of all the CRC cell lines tested. Fluorescent staining assays revealed characteristic nuclear condensation, and marked decrease in mitochondrial outer membrane potential in treated cells. In addition, an increment in the levels of ROS, caspase-8,-9 and -3 was observed. Proteomic analysis revealed that IR-SF up-regulated the expression of pro-apoptotic proteins, i.e., Bid, Bid and cytochrome c. Cytochrome c in turn activated caspases cascade resulting in the induction of apoptosis. Moreover, IR-SF significantly down-regulated Bcl-2, Bcl-w, survivin, xIAP and HSPs pro-proteins and induced DNA fragmentation and G0/G1-phase arrest in HCT 116 cells. Chemical characterization of IR-SF by GC-MS and HPLC methods identified Isoledene as one of the major compounds. Altogether, the results of the present study demonstrate that IR-SF may induce apoptosis in human colorectal carcinoma cells through activation of ROS-mediated apoptotic pathways.
    Matched MeSH terms: Epithelial Cells; HCT116 Cells
  3. Pati S, Muthuraju S, Hadi RA, Huat TJ, Singh S, Maletic-Savatic M, et al.
    Curr Stem Cell Res Ther, 2016;11(2):149-57.
    PMID: 26763886
    Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  4. Samberkar S, Gandhi S, Naidu M, Wong KH, Raman J, Sabaratnam V
    Int J Med Mushrooms, 2015;17(11):1047-54.
    PMID: 26853959
    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.
    Matched MeSH terms: Cells, Cultured; PC12 Cells
  5. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  6. Rahmat S, O'Beirne GA
    Hear Res, 2015 Dec;330(Pt A):125-33.
    PMID: 26209881 DOI: 10.1016/j.heares.2015.07.013
    Schroeder-phase masking complexes have been used in many psychophysical experiments to examine the phase curvature of cochlear filtering at characteristic frequencies, and other aspects of cochlear nonlinearity. In a normal nonlinear cochlea, changing the "scalar factor" of the Schroeder-phase masker from -1 through 0 to +1 results in a marked difference in the measured masked thresholds, whereas this difference is reduced in ears with damaged outer hair cells. Despite the valuable information it may give, one disadvantage of the Schroeder-phase masking procedure is the length of the test - using the conventional three-alternative forced-choice technique to measure a masking function takes around 45 min for one combination of probe frequency and intensity. As an alternative, we have developed a fast method of recording these functions which uses a Békésy tracking procedure. Testing at 500 Hz in normal hearing participants, we demonstrate that our fast method: i) shows good agreement with the conventional method; ii) shows high test-retest reliability; and iii) shortens the testing time to 8 min.
    Matched MeSH terms: Hair Cells, Auditory, Outer/physiology*
  7. Ikram HM, Rasool N, Ahmad G, Chotana GA, Musharraf SG, Zubair M, et al.
    Molecules, 2015 Mar 23;20(3):5202-14.
    PMID: 25806546 DOI: 10.3390/molecules20035202
    The present study reports the synthesis of various new derivatives based on 5-aryl-2-bromo-3-hexylthiophene with moderate-to-good yields via a palladium-catalyzed Suzuki cross-coupling reaction. This coupling method involved the reaction of 2,5-dibromo-3-hexylthiophene with several arylboronic acids in order to synthesize corresponding thiophene derivatives under controlled and optimal reaction conditions. The different substituents (CH3, OCH3, Cl, F etc.) present on arylboronic acids are found to have significant electronic effects on the overall properties of new products. The synthesized thiophene molecules were studied for their haemolytic, biofilm inhibition and anti-thrombolytic activities, and almost all products showed potentially good properties. The compound 2-bromo-5-(3-chloro-4-fluorophenyl)-3-hexylthiophenein particular exhibited the highest values for haemolytic and bio-film inhibition activities among all newly synthesized derivatives. In addition, the compound 2-bromo-3-hexyl-5-(4-iodophenyl)thiophene also showed high anti-thrombolytic activity, suggesting the potential medicinal applications of these newly synthesized compounds.
    Matched MeSH terms: Blood Cells/drug effects*
  8. Jayaram G, Othman MA, Kumar M, Krishnan G
    Malays J Pathol, 2002 Dec;24(2):107-12.
    PMID: 12887170
    A 60-year-old female developed a right parotid swelling six months after surgery for intra-oral squamous cell carcinoma. Fine needle aspiration (FNA) cytological smears showed dissociated large and small pleomorphic tumour cells with abundant mitoses and oncocytic features. A cytological diagnosis of parotid acinic cell carcinoma (ACC) was made. Histological study of the subtotal parotidectomy specimen showed a papillary cystic variety of acinic cell carcinoma (ACC-PCV). FNA cytological features in this case of ACC-PCV differs from the two previously reported cases in that it showed prominent oncocytic and high grade features and absence of papillary pattern in the cytological smears. ACC-PCV is an uncommon tumour and knowledge of its varied FNA cytological features is important for the diagnosis of this neoplasm.
    Matched MeSH terms: Oxyphil Cells/pathology*
  9. Khoo SP, Primasari A, Saub R
    J Oral Sci, 2001 Sep;43(3):151-7.
    PMID: 11732734
    There is presently no line of distinction between oral lichen planus and other oral lichenoid lesions. The aim of this study is to determine using histomorphometry, the differences between these lesions. Paraffin sections from 7 normal buccal epithelium, 19 oral lichen planus (LP), 14 oral lichenoid lesions (LL) and 7 discoid lupus erythematosus-like lesions (DLE-ll) were selected. The nuclear volume (V(N)) and cellular-volume (V(CELL)) of the epithelium were assessed using an image analyser. The V(N) and V(CELL), derived for both basal and spinal strata in LP and DLE-ll were 2.3 times more than that of normal tissues. There was a significant difference between LP and LL (P < 0.005) and between LL and DLE-ll (P < 0.001), but not between LP and DLE-ll. In conclusion, there appears to be a difference between LP, LL and DLE-ll and V(N) and V(CELL) may serve as potential discriminators between these groups of lesions.
    Matched MeSH terms: Epithelial Cells/pathology
  10. Choo CY, Chan KL, Takeya K, Itokawa H
    Phytother Res, 2001 May;15(3):260-2.
    PMID: 11351365
    The plant Typhonium flagelliforme (Araceae), commonly known as the 'rodent tuber', is often included as an essential ingredient in various herbal remedies recommended for cancer therapies in Malaysia. Various extracts prepared from either the roots, tubers, stems or leaves were tested for cytotoxic activity on murine P388 leukaemia cells using the MTT assay method. Both the chloroform (IC50 = 6.0 microg/mL) and hexane (IC50 = 15.0 microg/mL) extract from the 'roots and tubers' exhibited weak cytotoxic activity. The hexane extract (IC50 = 65.0 microg/mL) from the 'stems and leaves' exhibited weaker cytotoxic activity than the chloroform extract (IC50 = 8.0 microg/mL). Although the juice extract from the 'roots and tubers' is frequently consumed for cancer treatment, it exhibited poor cytotoxic activity. Further analysis using an amino acid analyser revealed that the juice extract contained a high concentration of arginine (0.874%). A high tryptophan content (0.800%) was confirmed by NMR and HPLC analysis.
    Matched MeSH terms: Tumor Cells, Cultured/drug effects
  11. Mohamad K, Martin MT, Najdar H, Gaspard C, Sévenet T, Awang K, et al.
    J Nat Prod, 1999 Jun;62(6):868-72.
    PMID: 10395505
    Nine 3,4-secoapotirucallanes, argentinic acids A-I, were isolated from the bark of Aglaia argentea and transformed to their methyl esters 1-9. The structures were determined by spectral and chemical means. Compounds 1-8 showed moderate cytotoxic activity against KB cells (IC50 1.0-3.5 microg/mL).
    Matched MeSH terms: KB Cells; Tumor Cells, Cultured
  12. Menon BS, Dasgupta A, Jackson N
    Pediatr Hematol Oncol, 1998 Mar-Apr;15(2):175-8.
    PMID: 9592844
    This study reviewed the immunophenotyping results of children with acute leukemia in Kelantan, Malaysia. In the 3.5-year period (January 1994 to June 1997), 45 cases were identified. All children were under the age of 12 years and the predominant ethnic group was Malay. Thirty-six cases (80%) were acute lymphoblastic leukemia (ALL) and 9 cases (20%) were acute myeloblastic leukemia (AML). Of the ALL cases, 3% were of B-cell and 22% of T-cell origin, and 96% of the B-lineage ALL were CD10 positive. All the AML cases expressed CD33 and 78% were positive for CD13. The incidence of mixed-lineage leukemias was 13.8% for My+ ALL and 11.1% for Ly+ AML.
    Matched MeSH terms: Bone Marrow Cells/immunology
  13. Lichius JJ, Thoison O, Montagnac A, Païs M, Guéritte-Voegelein F, Sévenet T, et al.
    J Nat Prod, 1994 Jul;57(7):1012-6.
    PMID: 7964782
    Bioassay-guided fractionation of the extracts of Zieridium pseudobtusifolium and Acronychia porteri led to the isolation of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone [1], which showed activity against (KB) human nasopharyngeal carcinoma cells (IC50 0.04 micrograms/ml) and inhibited tubulin assembly into microtubules (IC50 12 microM). Two other known flavonols, digicitrin [2] and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone [5], were also isolated together with three new ones, 3-O-demethyldigicitrin [3], 3,5,3'-trihydroxy-6,7,8,4'-tetramethoxyflavone [4], and 3,5-dihydroxy-6,7,8,3',4'-pentamethoxyflavone [6]. All of these flavonols showed cytotoxic activity against KB cells.
    Matched MeSH terms: KB Cells; Tumor Cells, Cultured
  14. Debnath NC, Tiernery R, Sil BK, Wills MR, Barrett AD
    J Gen Virol, 1991 Nov;72 ( Pt 11):2705-11.
    PMID: 1940867
    Defective interfering (DI) particles of the flavivirus West Nile (WN) were generated after as few as two high multiplicity serial passages in Vero and LLC-MK2 cells. Six cell lines (Vero, LLC-MK2, L929, HeLa, BHK-21 and SW13) were used to assay interference by DI particles in a yield reduction assay. Interference was found to vary depending on the cell type used. The highest levels of interference were obtained in LLC-MK2 cells, whereas no detectable effect was observed in BHK-21 and SW13 cells. The ability of DI virus to be propagated varied depending on the cell line used; no detectable propagation of DI virus was observed in SW13 cells. Optimum interference was obtained following co-infection of cells with DI virus and standard virus at a multiplicity of 5. Interference between DI and standard viruses occurred only when they were co-infected or when cells were infected with DI virus 1 h before standard virus. Investigation of heterotypic interference by DI particles of WN virus strains from Sarawak, India and Egypt revealed that interference was dependent on the strain of WN virus or flavivirus used as standard virus. A measure of the similarity between five strains of WN virus and other flaviviruses was made on the basis of interference by DI viruses, and was found to be similar to that based on haemagglutination inhibition tests using a panel of monoclonal antibodies.
    Matched MeSH terms: HeLa Cells; Vero Cells
  15. Peh SC, Danielle Quen QW
    Med J Malaysia, 2003 Jun;58(2):196-204.
    PMID: 14569739
    Epstein-Barr virus (EBV) is believed to have a pathogenic role in lymphomas of the upper-aerodigestive tract. This study aims to elucidate the virus association pattern in nasal and nasal-type NK/T-cell lymphomas, and in sequential biopsies of these tumours. A total of 31 cases of previously diagnosed as lethal midline granuloma. Stewart's granuloma, nasal T-cell non-Hodgkin's lymphoma (T-NHL) and NK/T-cell lymphomas from all anatomical sites were retrieved from the files for the study. Reviews of these cases confirm 8 nasal T-NHL, 19 nasal and 4 extranasal lymphomas of NK/T-cell phenotype from 10 Malays, 18 Chinese, 2 Indian and 1 Kadazan. The male: female ratio was 2.4: 1. All T- and NK/T-cell lymphomas strongly expressed TIA-1 and 63% expressed CD2. The majority of NK/T-cell lymphoma occurred in Chinese (13/23), of which 12/13 (92%) of these cases were associated with EBV. Of the 15 nasal and 9 tonsillar B-cell lymphomas included for a comparison study, only 3 (20%) of the nasal cases were associated with EBV (1 male Chinese, 1 female Chinese and 1 male of other ethnic group). Eight cases of NK/T-cell tumours with sequential biopsies show persistence of EBV, irrespective of the interval and sites of subsequent presentations. This study confirms the cytotoxic nature of NK/T-cell tumour and that EBV is strongly associated with the disease regardless of the anatomical site of presentation and ethnicity. However, nasal and paranasal lymphomas of all phenotypes appear to show higher predilection of EBV association in the ethnic Chinese when compared to non-Chinese.
    Matched MeSH terms: Killer Cells, Natural/immunology*
  16. Choi JR, Yong KW, Choi JY
    J Cell Physiol, 2018 Mar;233(3):1913-1928.
    PMID: 28542924 DOI: 10.1002/jcp.26018
    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  17. Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2020;15:7805-7823.
    PMID: 33116502 DOI: 10.2147/IJN.S269214
    Purpose: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line.

    Methods: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line.

    Results: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam.

    Conclusion: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.

    Matched MeSH terms: NIH 3T3 Cells; MCF-7 Cells
  18. Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, et al.
    Antioxid Redox Signal, 2017 Nov 01;27(13):913-930.
    PMID: 28173719 DOI: 10.1089/ars.2016.6844
    AIMS: MicroRNAs (miRNAs), one type of noncoding RNA, modulate post-transcriptional gene expression in various pathogenic pathways in type 2 diabetes (T2D). Currently, little is known about how miRNAs influence disease pathogenesis by targeting cells at a distance. The purpose of this study was to investigate the role of exosomal miRNAs during T2D.

    RESULTS: We show that miR-15a is increased in the plasma of diabetic patients, correlating with disease severity. miR-15 plays an important role in insulin production in pancreatic β-cells. By culturing rat pancreatic β-cells (INS-1) cells in high-glucose media, we identified a source of increased miR-15a in the blood as exosomes secreted by pancreatic β-cells. We postulate that miR-15a, produced in pancreatic β-cells, can enter the bloodstream and contribute to retinal injury. miR-15a overexpression in Müller cells can be induced by exposing Müller cells to exosomes derived from INS-1 cells under high-glucose conditions and results in oxidative stress by targeting Akt3, which leads to apoptotic cell death. The in vivo relevance of these findings is supported by results from high-fat diet and pancreatic β-cell-specific miR-15a-/- mice.

    INNOVATION: This study highlights an important and underappreciated mechanism of remote cell-cell communication (exosomal transfer of miRNA) and its influence on the development of T2D complications.

    CONCLUSION: Our findings suggest that circulating miR-15a contributes to the pathogenesis of diabetes and supports the concept that miRNAs released by one cell type can travel through the circulation and play a role in disease progression via their transfer to different cell types, inducing oxidative stress and cell injury. Antioxid. Redox Signal. 27, 913-930.

    Matched MeSH terms: Insulin-Secreting Cells/metabolism*
  19. Ogawa S, Sivalingam M, Anthonysamy R, Parhar IS
    Cell Tissue Res, 2020 Feb;379(2):349-372.
    PMID: 31471710 DOI: 10.1007/s00441-019-03089-5
    Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
    Matched MeSH terms: Neuroendocrine Cells/metabolism*
  20. Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S
    Cancers (Basel), 2019 08 28;11(9).
    PMID: 31466290 DOI: 10.3390/cancers11091261
    Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
    Matched MeSH terms: Neoplastic Stem Cells; Mesenchymal Stromal Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links