Displaying publications 1561 - 1580 of 8276 in total

Abstract:
Sort:
  1. Low SS, Loh HS, Boey JS, Khiew PS, Chiu WS, Tan MTT
    Biosens Bioelectron, 2017 Aug 15;94:365-373.
    PMID: 28319904 DOI: 10.1016/j.bios.2017.02.038
    An efficient electrochemical impedance genosensing platform has been constructed based on graphene/zinc oxide nanocomposite produced via a facile and green approach. Highly pristine graphene was synthesised from graphite through liquid phase sonication and then mixed with zinc acetate hexahydrate for the synthesis of graphene/zinc oxide nanocomposite by solvothermal growth. The as-synthesised graphene/zinc oxide nanocomposite was characterised with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffractometry (XRD) to evaluate its morphology, crystallinity, composition and purity. An amino-modified single stranded DNA oligonucleotide probe synthesised based on complementary Coconut Cadang-Cadang Viroid (CCCVd) RNA sequence, was covalently bonded onto the surface of graphene/zinc oxide nanocomposite by the bio-linker 1-pyrenebutyric acid N-hydroxysuccinimide ester. The hybridisation events were monitored by electrochemical impedance spectroscopy (EIS). Under optimised sensing conditions, the single stranded CCCVd RNA oligonucleotide target could be quantified in a wide range of 1.0×10-11M to 1.0×10-6 with good linearity (R =0.9927), high sensitivity with low detection limit of 4.3×10-12M. Differential pulse voltammetry (DPV) was also performed for the estimation of nucleic acid density on the graphene/zinc oxide nanocomposite-modified sensing platform. The current work demonstrates an important advancement towards the development of a sensitive detection assay for various diseases involving RNA agents such as CCCVd in the future.
    Matched MeSH terms: Base Sequence/genetics; DNA, Single-Stranded/genetics; Plant Viruses/genetics; RNA, Viral/genetics; Oligonucleotide Probes/genetics
  2. Das K, Ogawa S, Kitahashi T, Parhar IS
    Peptides, 2019 02;112:67-77.
    PMID: 30389346 DOI: 10.1016/j.peptides.2018.10.009
    A cichlid fish, the Nile tilapia (Oreochromis niloticus), is a maternal mouthbrooder, which exhibits minimum energy expenditure and slower ovarian cycles during mouthbrooding. The objective of this study was to observe changes in the gene expression of key neuropeptides involved in the control of appetite and reproduction, including neuropeptide Y a (NPYa), reproductive neuropeptides: gonadotropin-releasing hormone (GnRH1, GnRH2 and GnRH3) and kisspeptin (Kiss2) during mouthbrooding (4- and 12-days), 12-days of food restriction and 12-days of food restriction followed by refeeding. The food restriction regime showed a significant increase in npya mRNA levels in the telencephalon. However, there were no significant alterations in npya mRNA levels during mouthbrooding. gnrh1 mRNA levels were significantly lower in mouthbrooding female as compared with females with food restriction. gnrh3 mRNA levels were also significantly lower in female with 12-days of mouthbrooding, 12-days of food restriction followed by 12-days of refeeding when compared with controls. There were no significant differences in gnrh2 and kiss2 mRNA levels between groups under different feeding regimes. No significant changes were observed in mRNA levels of receptors for peripheral metabolic signaling molecules: ghrelin (GHS-R1a and GHS-R1b) and leptin (Lep-R). These results suggested that unaffected npya mRNA levels in the telencephalon might contribute to suppression of appetite in mouthbrooding female tilapia. Furthermore, lower gnrh1 and gnrh3 mRNA levels may influence the suppression of reproductive functions such as progression of ovarian cycle and reproductive behaviours, while GnRH2 and Kiss2 may not play a significant roles in reproduction under food restriction condition.
    Matched MeSH terms: Gonadotropin-Releasing Hormone/genetics*; Neuropeptide Y/genetics*; Leptin/genetics; Ghrelin/genetics; Kisspeptins/genetics
  3. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Neoplasms, Experimental/genetics; Prostatic Neoplasms/genetics*; Signal Transduction/genetics; Cadherins/genetics*; Receptors, CXCR3/genetics*
  4. Mohammed Basabaeen AA, Abdelgader EA, Babekir EA, Abdelrahim SO, Eltayeb NH, Altayeb OA, et al.
    Asian Pac J Cancer Prev, 2019 May 25;20(5):1579-1585.
    PMID: 31128065
    Objective: This study aimed at exploring the association of TP53 72Arg/Pro polymorphism and Risk of Chronic
    Lymphocytic Leukemia and to assess the correlation between TP53 72Arg/Pro polymorphism and clinical parameter,
    hematological profile and some biological prognostic markers among Sudanese patients with chronic lymphocytic
    leukemia. Methods: A case-control study was conducted in Khartoum state, Sudan, during the period from April 2017 to
    April 2018, involved 110 B-CLL patients and 80 healthy volunteers as a control group. Physical examination, Complete
    Blood Count and Immunophenotype were performed in all patients to confirm the diagnosis. Clinical staging such as
    Rai and Binet were studied. CD38 and ZAP70 were performed by Flow Cytometry. Blood samples were collected from
    all participants; DNA was extracted by using ANALYTIKJENA Blood DNA Extraction Kit (Germany) and analyzed
    TP53 codon 72Arg/Pro Polymorphism by using AS-PCR. The statistical analysis was performed using SPSS version
    23.0 software (Chicago, IL, USA). Results: the Arg/Pro was the most frequent genotype in B-CLL patients(50%),
    followed by Arg/Arg (25.5%) and Pro/Pro (24.5%), whereas in healthy control group Arg/Pro was the most frequent
    (47.5%), followed by Arg/Arg (45%) and Pro/Pro (7.5%). Our data indicate a higher frequency of homozygous Pro/
    Pro in the B-CLL patients as compared to controls with an OR of 4.01 for the Pro/Pro genotype and lower frequency
    of Arg/Arg genotype in CLL patients as compared to controls with an OR of .42 for the Arg/Arg genotype. Also, the
    Pro allele showed higher risk than Arg allele (P value=0.000, OR 2.23, 95% CI=1.45-3.41). No significant association
    between gender, clinical staging systems (Rai, Binet), biological prognostic markers (CD38 expression or ZAP70
    expression), and TP53 codon 72Arg/Pro polymorphisms, except Arg/Arg genotype tended to be associated with younger
    age (P =0.04). Conclusion: Our data suggested that Pro/Pro genotype contribute to increased susceptibility to B-Chronic
    Lymphocytic Leukemia risk in our population tenfold higher than those had Arg/Arg genotype.
    Matched MeSH terms: Dipeptides/genetics*; Leukemia, Lymphocytic, Chronic, B-Cell/genetics*; Tumor Suppressor Protein p53/genetics*; Genetic Predisposition to Disease/genetics*; Polymorphism, Single Nucleotide/genetics*
  5. Yang C, Li S, Li X, Li H, Li Y, Zhang C, et al.
    J Cell Mol Med, 2019 05;23(5):3549-3562.
    PMID: 30834718 DOI: 10.1111/jcmm.14254
    Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.
    Matched MeSH terms: Cell Differentiation/genetics; Transcription Factors/genetics; Avian Proteins/genetics*; Embryonic Development/genetics*; Hedgehog Proteins/genetics*
  6. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
    Matched MeSH terms: Cell Division/genetics; DNA Repair/genetics; Naegleria fowleri/genetics*; Oxidative Stress/genetics; Transcriptome/genetics*
  7. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

    Matched MeSH terms: Brain Neoplasms/genetics*; DNA, Mitochondrial/genetics*; Glioma/genetics*; Meningeal Neoplasms/genetics*; Meningioma/genetics*
  8. Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, et al.
    Genet Med, 2016 05;18(5):483-93.
    PMID: 26204423 DOI: 10.1038/gim.2015.110
    PURPOSE: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established.

    METHODS: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians.

    RESULTS AND CONCLUSION: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483-493.

    Matched MeSH terms: Cockayne Syndrome/genetics*; DNA Repair/genetics; DNA Helicases/genetics; Transcription Factors/genetics; DNA Repair Enzymes/genetics*
  9. Kazmi I, Alharbi KS, Al-Abbasi FA, Almalki WH, G SK, Yasmeen A, et al.
    Crit Rev Eukaryot Gene Expr, 2021;31(2):89-95.
    PMID: 34347983 DOI: 10.1615/CritRevEukaryotGeneExpr.2021037996
    Among various epithelial-to-mesenchymal transition (EMT)-related transcription factors (TFs), altered expression levels of Snail-1, Snail-2/Slug, Twist, and ZEB1 have shown a significant association in different cancers having a higher risk of metastasis. However, their role in the circulation of endometriosis patients is not well understood. Hence, the present study was designed to evaluate the crucial role of these TFs in defining the molecular pathogenesis for endometriosis progression and differentiation from control subjects. The qualitative and quantitative expression analysis of Snail-1, Snail-2/Slug, Twist, and ZEB1 were analyzed in peripheral blood samples of 75 different stages of endometriosis patients and compared with 50 control subjects. Total RNA was extracted and converted into complementary DNA (cDNA) for relative quantification of each gene transcript using SYBRGreen-based reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The Livak method of relative quantification was used for calculating the fold change in each TF compared with endogenous control. All four selected TFs showed significantly upregulated expression levels in endometriosis patients compared with control subjects. A three-fold increase was observed for Snail-1 (p = 0.0001), and a two-fold increase was observed for Snail-2 (p = 0.01), Twist (p = 0.0002), and ZEB1 (p = 0.001) in stage III and IV compared with stage I and II of endometriosis patients. The present study revealed that EMT-related TFs play a crucial role in the pathogenesis and differentiating different stages of endometriosis patients through expression analysis of specific molecular cascades using non-invasive tools.
    Matched MeSH terms: Endometriosis/genetics*; Nuclear Proteins/genetics*; Twist Transcription Factor/genetics*; Snail Family Transcription Factors/genetics*; Zinc Finger E-box-Binding Homeobox 1/genetics*
  10. Apalasamy YD, Ming MF, Rampal S, Bulgiba A, Mohamed Z
    Ann Hum Biol, 2013 Jan;40(1):102-6.
    PMID: 22989167 DOI: 10.3109/03014460.2012.720709
    Melanocortin-4 receptor (MC4R) is an important regulator of body weight and energy intake. Genetic polymorphisms of the MC4R gene have been found to be linked to obesity in many recent studies across the globe.
    Matched MeSH terms: Appetite/genetics; Blood Pressure/genetics; Energy Intake/genetics*; Obesity/genetics*; Receptor, Melanocortin, Type 4/genetics*
  11. Mollerup S, Asplund M, Friis-Nielsen J, Kjartansdóttir KR, Fridholm H, Hansen TA, et al.
    J Infect Dis, 2019 09 13;220(8):1312-1324.
    PMID: 31253993 DOI: 10.1093/infdis/jiz318
    BACKGROUND: Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data.

    METHODS: In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads.

    RESULTS: Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found.

    CONCLUSIONS: Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.

    Matched MeSH terms: Herpesviridae/genetics; Parvovirus/genetics; Papillomaviridae/genetics; Anelloviridae/genetics; Metagenome/genetics*
  12. Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JF, Murphy D
    J Neuroendocrinol, 2016 04;28(4).
    PMID: 26833868 DOI: 10.1111/jne.12371
    The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp transcription in the chronically dehydrated rat.
    Matched MeSH terms: Dehydration/genetics*; Promoter Regions, Genetic/genetics*; Vasopressins/genetics*; DNA Methylation/genetics*; Epigenesis, Genetic/genetics*
  13. Othman N, Nagoor NH
    Int J Oncol, 2019 01;54(1):306-314.
    PMID: 30365047 DOI: 10.3892/ijo.2018.4602
    The silencing of Bcl‑xL in the non‑small cell lung cancer (NSCLC) cell line, A549, downregulates miR‑361‑5p expression. This study aimed to determine the biological effects of miR‑361‑5p on NSCLC, and to elucidate the molecular mechanisms through which apoptosis is regulated. MicroRNA (miRNA or miR) functional analyses were performed via transfection of miR‑361‑5p mimics and inhibitors, demonstrating that the inhibition of miR‑361‑5p induced the apoptosis of NSCLC cells. To elucidate the function of miR‑361‑5p in vivo, cells transfected with miR‑361‑5p inhibitors were microinjected into zebrafish embryos, and immunostained using antibodies to detect the active form of caspase‑3. Co-transfection with siBcl‑xL and miR‑361‑5p mimics illustrated the association between Bcl‑xL, miR‑361‑5p and apoptosis; miR‑361‑5p mimics blocked the apoptosis initiated by siBcl‑xL. Luciferase reporter assays identified mothers against decapentaplegic homolog 2 (SMAD2) as a novel target of miR‑361‑5p and the reduction of its protein level was validated by western blot analysis. To confirm the molecular mechanisms through which apoptosis is regulated, gene rescue experiments revealed that the ectopic expression of SMAD2 attenuated the inhibitory effects on apoptosis induced by miR‑361‑5p. In this study, to the best of our knowledge, we provide the first evidence that miR‑361‑5p functions as an oncomiR in A549 and SK‑LU‑1 cells through the regulation of SMAD2, suggesting that miR‑361‑5p may be employed as a potential therapeutic target for the miRNA-based therapy of NSCLC.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/genetics*; Lung Neoplasms/genetics*; MicroRNAs/genetics*; bcl-X Protein/genetics; Smad2 Protein/genetics*
  14. Earp M, Tyrer JP, Winham SJ, Lin HY, Chornokur G, Dennis J, et al.
    PLoS One, 2018;13(7):e0197561.
    PMID: 29979793 DOI: 10.1371/journal.pone.0197561
    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.
    Matched MeSH terms: Monomeric GTP-Binding Proteins/genetics*; Polymorphism, Single Nucleotide/genetics; Quantitative Trait Loci/genetics; A Kinase Anchor Proteins/genetics*; Rho Guanine Nucleotide Exchange Factors/genetics*
  15. Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, et al.
    Cancer Rep (Hoboken), 2021 08;4(4):e1369.
    PMID: 33822486 DOI: 10.1002/cnr2.1369
    BACKGROUND: Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer.

    RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.

    CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics*; Neoplasms/genetics*; Phosphorylation/genetics; Receptors, Notch/genetics*; Protein Interaction Maps/genetics*
  16. Radhakrishnan AK, Raj VL, Tan LK, Liam CK
    Biomed Res Int, 2013;2013:981012.
    PMID: 23865080 DOI: 10.1155/2013/981012
    Asthma susceptibility genes are mapped to a region on human chromosome 5q31-q33, which contains a cluster of proinflammatory cytokine genes such as interleukin-13 (IL-13), which is associated with asthma. This study investigated the allele frequencies of two single nucleotide polymorphisms (SNPs) (-1111C>T and 4257C>A) in the IL-13 gene between asthmatics and healthy volunteers as well as the relationship between these SNPs and IL-13 production. DNA extracted from buffy coat of asthmatic and control subjects was genotyped using the PCR-RFLP method. Amount of IL-13 produced by mitogen-stimulated peripheral blood leucocytes PBLs (PBLs) was determined by ELISA. The frequencies of the -1111C and 4257G wild-type alleles were 0.52 and 0.55 in asthmatics and were 0.67 and 0.56 in controls. A significant (P < 0.05) association was found between genotype and allele frequencies of SNP at position -1111C>T between asthmatic and control groups (OR, 1.810; 95% CI = 1.184 to 2.767; P < 0.05). The mitogen-stimulated PBLs from asthmatics produced higher amounts of IL-13 production (P < 0.001). The 4257GA heterozygous and 4257AA homozygous mutant alleles were associated with higher IL-13 production in asthmatics (P < 0.05). Our results show that the -1111T mutant allele are associated with asthma and the 4257A mutant alleles are associated with elevated IL-13 production.
    Matched MeSH terms: Asthma/genetics*; Gene Frequency/genetics; Polymorphism, Restriction Fragment Length/genetics; Interleukin-13/genetics*; Polymorphism, Single Nucleotide/genetics*
  17. Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, et al.
    Int J Hematol, 2017 Dec;106(6):811-819.
    PMID: 28831750 DOI: 10.1007/s12185-017-2314-1
    miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
    Matched MeSH terms: DNA-Binding Proteins/genetics; Neoplasm Proteins/genetics; RNA, Neoplasm/genetics; Leukemia, Myeloid, Acute/genetics; MicroRNAs/genetics
  18. Vithana EN, Khor CC, Qiao C, Nongpiur ME, George R, Chen LJ, et al.
    Nat Genet, 2012 Oct;44(10):1142-1146.
    PMID: 22922875 DOI: 10.1038/ng.2390
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study including 1,854 PACG cases and 9,608 controls across 5 sample collections in Asia. Replication experiments were conducted in 1,917 PACG cases and 8,943 controls collected from a further 6 sample collections. We report significant associations at three new loci: rs11024102 in PLEKHA7 (per-allele odds ratio (OR)=1.22; P=5.33×10(-12)), rs3753841 in COL11A1 (per-allele OR=1.20; P=9.22×10(-10)) and rs1015213 located between PCMTD1 and ST18 on chromosome 8q (per-allele OR=1.50; P=3.29×10(-9)). Our findings, accumulated across these independent worldwide collections, suggest possible mechanisms explaining the pathogenesis of PACG.
    Matched MeSH terms: Carrier Proteins/genetics*; Repressor Proteins/genetics; Glaucoma, Angle-Closure/genetics*; Collagen Type XI/genetics*; Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics*
  19. Gupta T, Connors M, Tan JW, Manosroi W, Ahmed N, Ting PY, et al.
    Am J Hypertens, 2017 Dec 08;31(1):124-131.
    PMID: 28985281 DOI: 10.1093/ajh/hpx146
    BACKGROUND: Understanding the interactions between genetics, sodium (Na+) intake, and blood pressure (BP) will help overcome the lack of individual specificity in our current treatment of hypertension. This study had 3 goals: expand on the relationship between striatin gene (STRN) status and salt-sensitivity of BP (SSBP); evaluate the status of Na+ and volume regulating systems by striatin risk allele status; evaluate potential SSBP mechanisms.

    METHODS: We assessed the relationship between STRN status in humans (HyperPATH cohort) and SSBP and on volume regulated systems in humans and a striatin knockout mouse (STRN+/-).

    RESULTS: The previously identified association between a striatin risk allele and systolic SSBP was demonstrated in a new cohort (P = 0.01). The STRN-SSBP association was significant for the combined cohort (P = 0.003; β = +5.35 mm Hg systolic BP/risk allele) and in the following subgroups: normotensives, hypertensives, men, and older subjects. Additionally, we observed a lower epinephrine level in risk allele carriers (P = 0.014) and decreased adrenal medulla phenylethanolamine N-methyltransferase (PNMT) in STRN+/- mice. No significant associations were observed with other volume regulated systems.

    CONCLUSIONS: These results support the association between a variant of striatin and SSBP and extend the findings to normotensive individuals and other subsets. In contrast to most salt-sensitive hypertensives, striatin-associated SSBP is associated with normal plasma renin activity and reduced epinephrine levels. These data provide clues to the underlying cause and a potential pathway to achieve, specific, personalized treatment, and prevention.

    Matched MeSH terms: Calmodulin-Binding Proteins/genetics*; Hypertension/genetics*; Membrane Proteins/genetics*; Nerve Tissue Proteins/genetics*; Polymorphism, Genetic/genetics
  20. Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW
    Biol Reprod, 2018 03 01;98(3):323-334.
    PMID: 29088317 DOI: 10.1093/biolre/iox133
    A major gene for bovine ovulation rate has been mapped to a 1.2 Mb region of chromosome 10. Screening of coding regions of positional candidate genes within this region failed to reveal a causative polymorphism, leading to the hypothesis that the phenotype results from differences in candidate gene expression rather than alteration of gene structure. This study tested differences in expression of positional candidate genes in granulosa cells between carriers and noncarriers of the high fecundity allele, as well as characterizing differences in the transcriptomic profile between genotypes. Five carriers and five noncarriers, female descendants of "Trio," a carrier of the high fecundity allele were initially used in an RNA-seq analysis of gene expression. Four of ten samples were contaminated with theca cells, so that six samples were used in the final analysis (three of each genotype). Of 14 973 genes expressed, 143 were differentially expressed (false discovery rate P < 0.05) in carriers versus noncarriers. Among the positional candidate genes, SMAD6 was 6.6-fold overexpressed in the carriers compared to noncarriers (P < 5 × 10-5). This result was replicated in an independent group of 12 females (7 carriers and 5 noncarriers) using quantitative real-time PCR; SMAD6 was 9.3-fold overexpressed in carriers versus noncarriers (P = 1.17 × 10-6). Association of overexpression of SMAD6, an inhibitor of the BMP/SMAD signaling pathway, with high ovulation rate corresponds well with disabling mutations in ligands (BMP15 and GDF9) and a receptor (BMPR1B) of this pathway that cause increased ovulation rate in sheep.
    Matched MeSH terms: Fertility/genetics*; Ovulation/genetics*; Smad6 Protein/genetics; Growth Differentiation Factor 9/genetics; Bone Morphogenetic Protein 15/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links