Displaying publications 141 - 160 of 212 in total

Abstract:
Sort:
  1. Jamila N, Khan N, Khan AA, Khan I, Khan SN, Zakaria ZA, et al.
    PMID: 28573253 DOI: 10.21010/ajtcam.v14i2.38
    BACKGROUND: Garcinia hombroniana, known as "manggis hutan" (jungle mangosteen) in Malaysia, is distributed in tropical Asia, Borneo, Thailand, Andaman, Nicobar Islands, Vietnam and India. In Malaysia, its ripened crimson sour fruit rind is used as a seasoning agent in curries and culinary dishes. Its roots and leaves decoction is used against skin infections and after child birth. This study aimed to evaluate in vivo hepatoprotective and in vitro cytotoxic activities of 20% methanolic ethyl acetate (MEA) G. hombroniana bark extract.

    MATERIALS AND METHODS: In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl4)/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl4. Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1H, 13C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract.

    RESULTS: In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (p<0.05) potency. In cytotoxicity study, MEA extract was more toxic towards MCF-7 and DBTRG cell lines causing 78.7% and 64.3% cell death, respectively. MEA extract in 1H, 13C-NMR, and IR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents.

    CONCLUSIONS: From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  2. Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Md Hashim NF
    Molecules, 2018 Apr 10;23(4).
    PMID: 29642589 DOI: 10.3390/molecules23040865
    In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  3. Liew SK, Azmi MN, In L, Awang K, Nagoor NH
    Drug Des Devel Ther, 2017;11:2763-2776.
    PMID: 29075101 DOI: 10.2147/DDDT.S130349
    Nine analogs of 1'S-1'-acetoxychavicol acetate (ACA) were hemi-synthesized and evaluated for their anticancer activities against seven human cancer cell lines. The aim of this study was to investigate the anti-proliferative, apoptotic, and anti-migration effects of these compounds and to explore the plausible underlying mechanisms of action. We found that ACA and all nine analogs were non toxic to human mammary epithelial cells (HMECs) used as normal control cells, and only ACA, 1'-acetoxyeugenol acetate (AEA), and 1'-acetoxy-3,5-dimethoxychavicol acetate (AMCA) inhibited the growth of MDA-MB-231 breast cancer cells with a half-maximal inhibitory concentration (IC50) value of <30.0 μM based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results, and were selected for further investigation. DNA fragmentation assays showed that these three compounds markedly induced apoptosis of MDA-MB-231 cells. Western blot analysis revealed increased expression levels of cleaved PARP, p53, and Bax, while decreased expression levels of Bcl-2 and Bcl-xL were seen after treatment, indicating that apoptosis was induced via the mitochondrial pathway. Moreover, ACA, AEA, and AMCA effectively inhibited the migration of MDA-MB-231 cells. They also downregulated the expression levels of pFAK/FAK and pAkt/Akt via the integrin β1-mediated signaling pathway. Collectively, ACA and its hemi-synthetic analogs, AEA and AMCA are seen as potential anticancer agents following their abilities to suppress growth, induce apoptosis, and inhibit migration of breast cancer cells.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  4. Abrahim NN, Kanthimathi MS, Abdul-Aziz A
    BMC Complement Altern Med, 2012 Nov 15;12:220.
    PMID: 23153283 DOI: 10.1186/1472-6882-12-220
    BACKGROUND: Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7.

    METHODS: The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells.

    RESULTS: Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase.

    CONCLUSIONS: Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

    Matched MeSH terms: Breast Neoplasms/drug therapy
  5. Lim LY, Miao H, Lim JS, Lee SC, Bhoo-Pathy N, Yip CH, et al.
    Cancer Med, 2017 Jan;6(1):173-185.
    PMID: 28000426 DOI: 10.1002/cam4.985
    We aim to identify clinicopathologic predictors for response to neoadjuvant chemotherapy and to evaluate the prognostic value of pathologic complete response (pCR) on survival in Asia. This study included 915 breast cancer patients who underwent neoadjuvant chemotherapy at five public hospitals in Singapore and Malaysia. pCR following neoadjuvant chemotherapy was defined as 1) no residual invasive tumor cells in the breast (ypT0/is) and 2) no residual invasive tumor cells in the breast and axillary lymph nodes (ypT0/is ypN0). Association between pCR and clinicopathologic characteristics and treatment were evaluated using chi-square test and multivariable logistic regression. Kaplan-Meier analysis and log-rank test, stratified by other prognostic factors, were conducted to compare overall survival between patients who achieved pCR and patients who did not. Overall, 4.4% of nonmetastatic patients received neoadjuvant chemotherapy. The median age of preoperatively treated patients was 50 years. pCR rates were 18.1% (pCR ypT0/is) and 14.4% (pCR ypT0/is ypN0), respectively. pCR rate was the highest among women who had higher grade, smaller size, estrogen receptor negative, human epidermal growth factor receptor 2-positive disease or receiving taxane-based neoadjuvant chemotherapy. Patients who achieved pCR had better overall survival than those who did not. In subgroup analysis, the survival advantage was only significant among women with estrogen receptor-negative tumors. Patients with poor prognostic profile are more likely to achieve pCR and particularly when receiving taxane-containing chemotherapy. pCR is a significant prognostic factor for overall survival especially in estrogen receptor-negative breast cancers.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  6. Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM, Ahmadipour F
    Drug Des Devel Ther, 2015;9:6191-201.
    PMID: 26648695 DOI: 10.2147/DDDT.S87064
    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  7. Phua CE, Tang WH, Yusof MM, Saad M, Alip A, See MH, et al.
    Asian Pac J Cancer Prev, 2014;15(23):10263-6.
    PMID: 25556458
    BACKGROUND: The risk of febrile neutropaenia (FN) and treatment related death (TRD) with first line palliative chemotherapy for de novo metastatic breast cancer (MBC) remains unknown outside of a clinical trial setting despite its widespread usage. This study aimed to determine rates in a large cohort of patients treated in the University of Malaya Medical Centre (UMMC).

    MATERIALS AND METHODS: Patients who were treated with first line palliative chemotherapy for de novo MBC from 2002-2011 in UMMC were identified from the UMMC Breast Cancer Registry. Information collected included patient demographics, histopathological features, treatment received, including the different chemotherapy regimens, and presence of FN and TRD. FN was defined as an oral temperature >38.5° or two consecutive readings of >38.0° for 2 hours and an absolute neutrophil count <0.5x109/L, or expected to fall below 0.5x109/L (de Naurois et al, 2010). TRD was defined as death occurring during or within 30 days of the last chemotherapy treatment, as a consequence of the chemotherapy treatment. Statistical analysis was performed using the SPSS version 18.0 software. Survival probabilities were estimated using the Kaplan-Meier method and differences in survival compared using log-rank test.

    RESULTS: Between 1st January 2002 and 31st December 2011, 424 patients with MBC were treated in UMMC. A total of 186 out of 221 patients with de novo MBC who received first line palliative chemotherapy were analyzed. The mean age of patients in this study was 49.5 years (range 24 to 74 years). Biologically, ER status was negative in 54.4% of patients and Her-2 status was positive in 31.1%. A 5-flourouracil, epirubicin and cyclophosphamide (FEC) chemotherapy regimen was chosen for 86.6% of the cases. Most patients had multiple metastatic sites (58.6%). The main result of this study showed a FN rate of 5.9% and TRD rate of 3.2%. The median survival (MS) for the entire cohort was 19 months. For those with multiple metastatic sites, liver only, lung only, bone only and brain only metastatic sites, the MS was 18, 24, 19, 24 and 8 months respectively (p-value= 0.319).

    CONCLUSIONS: In conclusion, we surmise that FEC is a safe regimen with acceptable FN and TRD rates for de novo MBC.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  8. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  9. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  10. Janib SM, Gustafson JA, Minea RO, Swenson SD, Liu S, Pastuszka MK, et al.
    Biomacromolecules, 2014 Jul 14;15(7):2347-58.
    PMID: 24871936 DOI: 10.1021/bm401622y
    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and therapeutic applications.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  11. Taghizadeh Davoudi E, Ibrahim Noordin M, Kadivar A, Kamalidehghan B, Farjam AS, Akbari Javar H
    Biomed Res Int, 2013;2013:495319.
    PMID: 24288681 DOI: 10.1155/2013/495319
    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  12. Tor YS, Yazan LS, Foo JB, Armania N, Cheah YK, Abdullah R, et al.
    PMID: 24524627 DOI: 10.1186/1472-6882-14-55
    Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  13. Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS
    PMID: 24517259 DOI: 10.1186/1472-6882-13-347
    Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots.
    Matched MeSH terms: Breast Neoplasms/drug therapy
  14. How CW, Rasedee A, Manickam S, Rosli R
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:393-9.
    PMID: 24036474 DOI: 10.1016/j.colsurfb.2013.08.009
    Cancer nanotherapeutics is beginning to overwhelm the global research and viewed to be the revolutionary treatment regime in the medical field. This investigation describes the development of a stable nanostructured lipid carrier (NLC) system as carrier for Tamoxifen (TAM). The TAM-loaded NLC (TAM-NLC) developed with 200mg of TAM showed a spherical particle with the size of 46.6nm, polydispersity index of 0.267, entrapment efficiency of 99.74% and with the zeta potential of -23.78mV. Besides, the equivalent cytotoxicity of TAM and TAM-NLC to human (MCF-7) and mice (4T1) mammary breast cancer cell lines were observed. Incubating the formulation at the physiological pH resulted into reduced Ostwald ripening rate but without any significant change in the absorptivity. When coupled with the measurements of zeta potential and Ostwald ripening rate, the absorbance assay may be used to predict the long-term stability of drug-loaded nanoparticle formulations. The results of the study also suggest that TAM-NLC is a promising drug delivery system for breast cancer therapy. This is the first encouraging report on the in vitro effect of TAM-NLC against human and mouse mammary adenocarcinoma cell lines.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  15. Chandramathi S, Suresh K, Anita ZB, Kuppusamy UR
    Trans R Soc Trop Med Hyg, 2012 Apr;106(4):267-9.
    PMID: 22340948 DOI: 10.1016/j.trstmh.2011.12.008
    Chemotherapy can cause immunosuppression, which may trigger latent intestinal parasitic infections in stools to emerge. This study investigated whether intestinal parasites can emerge as opportunistic infections in breast and colorectal cancer patients (n=46 and n=15, respectively) undergoing chemotherapy treatment. Breast cancer patients were receiving a 5-fluorouracil/epirubicin/cyclophosphamide (FEC) regimen (6 chemotherapy cycles), and colorectal cancer patients were receiving either an oxaliplatin/5-fluorouracil/folinic acid (FOLFOX) regimen (12 cycles) or a 5-fluorouracil/folinic acid (Mayo) regimen (6 cycles). Patients had Blastocystis hominis and microsporidia infections that were only present during the intermediate chemotherapy cycles. Thus, cancer patients undergoing chemotherapy should be screened repeatedly for intestinal parasites, namely B. hominis and microsporidia, as they may reduce the efficacy of chemotherapy treatments.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  16. Li YT, Chua MJ, Kunnath AP, Chowdhury EH
    Int J Nanomedicine, 2012;7:2473-81.
    PMID: 22701315 DOI: 10.2147/IJN.S30500
    Multidrug resistance, a major impediment to successful cancer chemotherapy, is the result of overexpression of ATP-binding cassette (ABC) transporters extruding internalized drugs. Silencing of ABC transporter gene expression with small interfering RNA (siRNA) could be an attractive approach to overcome multidrug resistance of cancer, although delivery of siRNA remains a major hurdle to fully exploit the potential of siRNA-based therapeutics. Recently, we have developed pH-sensitive carbonate apatite nanoparticles to efficiently carry and transport siRNA across the cell membrane, enabling knockdown of the cyclin B1 gene and consequential induction of apoptosis in synergy with anti-cancer drugs.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  17. Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, et al.
    PMID: 22471785 DOI: 10.1186/1472-6882-12-35
    Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  18. Tan BS, Tiong KH, Muruhadas A, Randhawa N, Choo HL, Bradshaw TD, et al.
    Mol. Cancer Ther., 2011 Oct;10(10):1982-92.
    PMID: 21831963 DOI: 10.1158/1535-7163.MCT-11-0391
    Both 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F-203; NSC 703786) and 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610; NSC 721648) are antitumor agents with novel mechanism(s). Previous studies have indicated that cytochrome (CYP) P450 1A1 is crucial for 5F-203 activity. In the present study, we investigated the functional role of 2 newly identified CYP P450 enzymes, CYP2S1 and CYP2W1, in mediating antitumor activity of benzothiazole compounds. We generated isogenic breast cancer (MDA-MB-468, MCF-7) and colorectal cancer (CRC; KM12 and HCC2998) cell lines depleted for CYP1A1, CYP2S1, or CYP2W1. The sensitivity of these cells to 5F-203 and GW-610 was then compared with vector control cells. 5F-203 exhibited potent activity against breast cancer cells, whereas GW-610 was effective against both breast and colorectal cancer cells. CYP1A1 was induced in both breast cancer and CRC cells, while CYP2S1 and CYP2W1 were selectively induced in breast cancer cells only following treatment with 5F-203 or GW-610. Depletion of CYP1A1 abrogated the sensitivity of breast cancer and CRC cells to 5F-203 and GW-610. Although depletion of CYP2S1 sensitized both breast cancer and CRC cells toward 5F-203 and GW-610, CYP2W1 knockdown caused marked resistance to GW-610 in CRC cells. Our results indicate that CYP-P450 isoforms, with the exception of CYP1A1, play an important role in mediating benzothiazole activity. CYP2S1 appears to be involved in deactivation of benzothiazoles, whereas CYP2W1 is important for bioactivation of GW-610 in CRC cells. Because CYP2W1 is highly expressed in colorectal tumors, GW-610 represents a promising agent for CRC therapy.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  19. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN
    J Sci Food Agric, 2012 Feb;92(3):593-7.
    PMID: 25520982
    In this study the chemical composition, antioxidant activities and cytotoxic effect of the essential oils of Myristica fragrans (nutmeg) and Morinda citrifolia (mengkudu) were determined.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  20. Hassan BA, Yusoff ZB
    Asian Pac J Cancer Prev, 2011;12(1):185-91.
    PMID: 21517255
    INTRODUCTION: Nausea and vomiting are recognized as two separate and distinct conditions with a wide spectrum of etiologies either directly associated with cancer itself or its treatment. According to the new ranking of chemotherapy side effects, nausea is the number one or the most disturbing side effects while vomiting is the third and sometimes the fifth. The introduction of 5-HT3-recptor antagonists in the early of 1990s has revolutionized the treatment of nausea and vomiting, these agents remaining the mainstay of antiemetic therapy today. Ethnic variation (due to genetic polymorphisms) may lead to diversity in antiemetic treatment pharmacokinetic and pharmacodynamic properties, in terms of distribution, elimination, disposition and clinical effects. The aim of the present study was to clarify genetic polymorphism effects in the three main races in Malaysia i.e., Malay, Chinese and Indian, on the clinical antiemetic effects of granisetron.

    METHODS: In this longitudinal prospective observational study, 158 breast cancer patients treated with chemotherapy were monitored for nausea and vomiting in the first 24 hours after chemotherapy administration. The patients were then followed up again after 3 to 5 days of chemotherapy.

    RESULTS: Genetic polymorphisms in the three races in Malaysia have significant effect on granisetron clinical antiemetic action because each is characterized by variant CYP3A4 enzymatic action.

    CONCLUSION: According to the result, different type of 5-HT3 receptor antagonists, such as tropisetron and dolasetron which are predominantly metabolized by CYP2D6, should be used especially for Chinese breast cancer patients.

    Study site: Hospital Pulau Pinang
    Matched MeSH terms: Breast Neoplasms/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links