The transformation of systematic vacuum and hydrogen annealing effects in graphene devices on the SiO2 surface is reported based on experimental and van der Waals interaction corrected density functional theory (DFT) simulation results. Vacuum annealing removes p-type dopants and reduces charged impurity scattering in graphene. Moreover, it induces n-type doping into graphene, leading to the improvement of the electron mobility and conductivity in the electron transport regime, which are reversed by exposing to atmospheric environment. On the other hand, annealing in hydrogen/argon gas results in smaller n-type doping along with a decrease in the overall conductivity and carrier mobility. This degradation of the conductivity is irreversible even the graphene devices are exposed to ambience. This was clarified by DFT simulations: initially, silicon dangling bonds were partially terminated by hydrogen, subsequently, the remaining dangling bonds became active and the distance between the graphene and SiO2 surface decreased. Moreover, both annealing methods affect the graphene channel including the vicinity of the metal contacts, which plays an important role in asymmetric carrier transport.
Proper dosimetry settings are crucial in radiotherapy to ensure accurate radiation dose delivery. This work evaluated scanning parameters as affecting factors in reading the dose-response of EBT2 and EBT3 radiochromic films (RCFs) irradiated with clinical photon and electron beams. The RCFs were digitised using Epson® Expression® 10000XL flatbed scanner and image analyses of net optical density (netOD) were conducted using five scanning parameters i.e. film type, resolution, image bit depth, colour to grayscale transformation and image inversion. The results showed that increasing spatial resolution and deepening colour depth did not improve film sensitivity, while grayscale scanning caused sensitivity reduction below than that detected in the Red-channel. It is also evident that invert and colour negative film type selection negated netOD values, hence unsuitable for scanning RCFs. In conclusion, choosing appropriate scanning parameters are important to maintain preciseness and reproducibility in films dosimetry.
Electron beam vulcanization of natural rubber latex has been developed as an alternative to the conventional sulphur vulcanization method. This study aimed at determining the effect of electron beam dose, beam current and centrifugation to the tensile properties of field natural rubber latex. Irradiation dose and beam current ranged from 50 to 300 kGy and 1 to 15 mA respectively. The determination of tensile properties were done on cast film prepared from irradiated field latex before and after centrifugation. It was found that tensile properties increased with radiation dose but decreased with beam current. Rubber films made from centrifuged irradiated field latex were softer and showed higher tensile strength.
Many techniques have been applied to fabricate nanostructures via top-down approach such as electron beam lithography. However, most of the techniques are very complicated and involves many process steps, high cost operation as well as the use of hazardous chemicals. Meanwhile, atomic force microscopy (AFM) lithography is a simple technique which is considered maskless and involves only an average cost and less complexity. In AFM lithography, the movement of a probe tip can be controlled to create nanoscale patterns on sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was operated in non-contact AFM mode to grow nanoscale oxide patterns on silicon-on-insulator (SOI) wafer surface based on local anodic oxidation (LAO) mechanism. The patterned structure was etched through two steps of wet etching processes. First, the TMAH was used as the etchant solution for Si removing. In the second step, diluted HF was used to remove oxide mask in order to produce a completed SiNW based devices. A SiNW based device which is formed by a nanowire channel, source and drain pads with lateral gate structures can be fabricated by well controlling the lithography process (applied tip voltage and writing speed) as well as the etching processes.
A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
) on the growth of Xanthostemon chrysantus. It was
also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
+ 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
tightly arranged in response to the application of PBZ.
Titanium dioxide particles were successfully prepared using microemulsion-mediated hydrothermal processing route, with sucrose ester as a stabilising agent. X-ray diffraction patterns revealed that the particles possessed anatase crystal phase. Scanning electron micrographs showed micron-sized spherical particles with rough and smooth surfaces, which eventually interconnected with one another. The formation mechanism of the titanium dioxide microstructures was postulated. The as-prepared particles were subjected to photocatalytic degradation of methylene blue, which exhibited higher photocatalytic activity compared to their commercial counterpart.
As of today, ultra-high molecular weight polyethylene (UHMWPE) is a thermoplastic material normally used as bearing
components for human joint replacements. However, formation of wear debris from UHMWPE after certain service
periods may cause adverse effects which remain as unresolved issues. In this study, mechanical and dry sliding wear
properties of UHMWPE reinforced with different loading of talc particles were investigated. The wear test was carried
out using Ducom TR-20 pin-on-disc tester at different pressure velocity (pv) factors under dry sliding conditions. The
worn surfaces and transfer films of pure UHMWPE and talc/UHMWPE composites were observed under scanning electron
microscope (SEM). The experimental results showed that the microhardness increased with the increase of talc loadings
in UHMWPE. The 20 wt. % talc/UHMWPE composites showed a 17% increment in microhardness as compared with pure
UHMWPE. The dry sliding wear behaviour of UHMWPE was also improved upon the reinforcement of talc. The wear rate
of UHMWPE decreased after incorporation of talc particles. The coefficient of friction (COF) increased slightly under low
pv conditions. At high pv conditions, the COF decreased in values with increasing talc loadings. The improvement in
wear behaviour may be attributed to the increase in load-carrying capacity and surface hardness of the talc/UHMWPE
composites. SEM micrographs on worn surfaces showed that plastic deformation and grooving wear were dominant for
UHMWPE. The plastic deformation and grooving wear were reduced upon the reinforcement of talc particles. The talc/
UHMWPE composites produced smoother and uniform transfer films as compared to pure UHMWPE.
The effects of the X-ray irradiation and chemical etching on the physical and optical properties of cR-39 plastic detectors were investigated for different doses of X-ray. cR-39 detectors were etched in the solution of the 3 M of NaOH after irradiation for revelations of the track. The tracks formed on cR-39 either by irradiated X-ray or due to the effect of environment. The changes in the thickness after exposed have significant decrease in 60 kVp and started to increase in the range of 70 kVp up to 100 kVp due to the formation of oxidation layer on surface by free radicals. The optical band gaps before etching and after etching were determined by using Ultraviolet-visible (uv-Vis) spectroscopy. The optical band gap is attributed to the indirect transition due to its amorphous nature which is significantly decline trend energy in increase of the energy fluence of radiation. The Urbach's energy, is defined as the width of the tail localized states in the forbidden band gap which change increment trend as increase in dose delivered due to the distortion structure of the cR-39 in terms of the electron charges in valences electron hence attributes to the induced modification of angle bond between the neighboring atoms.
An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
The main objectives of this work were to develop a lab-scale direct current (DC) glow discharges plasma system for modification of organic and inorganic membranes. Characteristics of plasma system were presented under the discharge of five gases (Ar, N2, air, O2, and CO2). A Langmuir double probe was used for the evaluation of the electron temperature (Te) and electron density (ne) of plasmas. The current and voltage (I-V) characteristic curves were analyzed. Relationships between breakdown voltage (VB) of gases and products of gas pressure and inter-electrode gap (pd) were studied in form of Paschen curves. The results showed that Te of plasma in various gases was in the range of 4-13 eV, while the ne varied between 108 and 109 cm-3. The plasma generated at different gas pressure and applied voltage is in the normal and abnormal modes. Finally, the constructed DC-plasma system was utilized for modification of polymeric membrane surfaces. Treatment time, discharge power and type of gas were varied. The tailoring of membrane surfaces was analyzed through the water contact angle and percent-weight loss (PWL) measurements, DMTA, AFM, XPS and FTIR spectrum. It could be shown that DC-plasma from this system can be used to modify the surface of polymeric membranes.
This study investigated the different thicknesses of TiO2 photoanode films and the effect of surface plasmon resonance (SPR) of Ag-TiO2 nanocomposites on the current-voltage (I-V) performance of dye-sensitized solar cells (DSSC). The TiO2 layer was deposited using the doctor blade technique and the thickness of the TiO2 films was controlled by using a different number of Scotch tape layers. The silver nanoparticles (AgNP) were synthesised using a chemical reduction method and the concentration of sodium citrate as a reducing agent was varied from 4 to 12 mM to study the effect of citrate ion on the size of the nanoparticles. Ag-TiO2 nanopowder was prepared by adding pure anatase TiO2 powder into AgNP colloidal solution. The mixture was left to dry for 24 h to obtain Ag-TiO2 powder for paste preparation. The three-layer Scotch tape, with thickness of 14.38 µm, achieved a high efficiency of 4.14%. This results showed that three layers was the optimal thickness to improve dye loading and to reduce the charge recombination rate. As for the Ag-TiO2 nanocomposites, 10 mM of AgNP, with a mean diameter of 65.23 nm and high efficiency of 6.92%, proved that SPR can enhance the absorption capability of dye and improve the photon-to-electron generation.
AgCl/BiYO3
composite was successfully synthesized via the aqueous precipitation method followed by calcination. The
varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3
via sonochemical-assisted method. The structures and
morphologies of the as-prepared AgCl/BiYO3
composite were characterized by x-ray diffraction (XRD), scanning electron
microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/
BiYO3
composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3
composite was
evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants,
under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable
photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover,
the mechanism of photocatalytic degradation of AgCl/BiYO3
was elucidated using three types of free radical scavengers.
The significant enhancement was attributed to the formation of AgCl/BiYO3
heterojunction resulting in the low electronhole
pair recombination rate.
hlorophyll a is known as the prevailing light absorbing pigment giving a strong absorption and fluorescence emission in visible region. Quenching reactions of the chlorophyll a fluorescence by Fe(acac)3 were precisely investigated in various organic solvents which are benzene toluene, ethanol, methanol, dmf, dmso and acetonitrile. Electron transfer performance of chlorophyll a by Fe(acac)3 was investigated from oxidative quenching reaction. Herein, the simplified Rehm-Weller relationship was used to calculate the free energy change of the photo-induced electron transfer reaction. Emission intensity decreased when the concentration of Fe(acac)3 quencher was increased. Non-linear Stern-Volmer plots are found to be affected by inner filter effect more than the ground state complex formation. Rate of quenching reactions (kq) were determined from the Stern-Volmer equation with corrected inner filter effect. The rates of quenching reactions occurred faster in high viscous solvents.
The presence of two different chromophores in benzothiazole molecule namely benzothiazole and aromatic rings lead to
interesting chemical and biological properties that attract more researches on the compounds. Three new benzothiazolylbenzoythiourea
compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-
(4-chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3
) with
different electron withdrawing substituents (R) at the para positions on the benzene ring of benzoylthiourea ring have
been synthesized from the reaction of R-benzoyl isothiocyanate (R= H, Cl, and OCH3
) and 2-aminobenzothiazole. The
compounds were characterized by spectroscopic techniques (infrared, 1
H proton NMR and UV-Vis). The IR spectra showed
the frequency signals of n (C=O), n (C=S), n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1, respectively. The 1
H
proton NMR spectra showed the presence of N-H amine and amide signals in the region of (12.14-12.35) and (14.17-14.43)
ppm, respectively. The proton signals of the two benzothiazole and benzoylthiourea moieties appear at 7.08-8.16 ppm.
A theoretical study based on Density Functional Theory (DFT) and Time-Dependent (TD) DFT was conducted to optimize
the geometrical structure and investigate the electronic properties of title compounds. The highest occupied molecular
orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular orbital (LUMO) was
located at the benzoylthiourea fragment. The DFT optimized structures possessed an intramolecular hydrogen bonding
and the types of para substituents used influenced the properties of hydrogen bonding.
As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
Gamma radiolytic synthesis was used to produce size-controlled spherical platinum nanoparticles from an aqueous solution containing platinum tetraammine and polyvinyl pyrrolidone. The structural characterizations were performed using X-ray diffraction, and transmission electron microscopy. The transmission electron microscopy was used to determine the average particle diameter, which decreased from 4.4nm at 80kGy to 2.8nm at 120kGy. The UV-visible absorption spectrum was measured and found that platinum nanoparticles exhibit two steady absorption maxima in UV regions due to plasmonic excitation of conduction electrons, which blue shifted to lower wavelengths with a decrease in particle size. We consider the conduction electrons of platinum nanoparticles to follow Thomas-Fermi-Dirac-Weizsacker atomic model that they are not entirely free but weakly bounded to particles at lower-energy states {n = 5, l = 2 or 5d} and {n = 6, l = 0 or 6s}, which upon receiving UV photon energy the electrons make intra-band quantum excitations to higher-energy states allowed by the principles of quantum number that results the absorption maxima. We found an excellent agreement between the experimental and theoretical results, which suggest that the optical absorption of metal nanoparticles could be fundamentally described by a quantum mechanical interpretation, which could be more relevant to photo-catalysis and heterogeneous catalysis.
We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm(-1) corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm(-1) corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.
The efficient oxidative removal of persistent organic components in wastewater relies on low-cost heterogeneous catalysts that offer high catalytic activity, stability, and recyclability. Here, we designed a series of nanostructured Co-Mn containing perovskite catalysts, LaCo1-xMnxO3+δ (LCM, x = 0, 0.3, 0.5, 0.7, and 1.0), with over-stoichiometric oxygen (δ > 0) to show superior catalytic activity for the degradation of a variety of persistent aqueous organic pollutants by activating peroxymonosulfate (PMS). The nature of LCM for catalysis was comprehensively investigated. A "volcano-shaped" correlation was observed between the catalytic activity and electron filling (eg) of Co in LCM. Among these compounds, LaCo0.5Mn0.5O3+δ (LCM55) exhibited an excellent activity with eg = 1.27. The high interstitial oxygen ion diffusion rate (DO2- = 1.58 ± 0.01 × 10-13 cm2 s-1) of LCM55 also contributes to its catalytic activity. The enhanced stability of LCM55 can be ascribed to its stronger relative acidity (3.22). Moreover, an increased solution pH (pH ≥ 7) generated a faster organic degradation rate and a decrease in metal leaching (0.004 mM) for LCM55 perovskite, justifying it as a potential material for environmental remediation.
Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m2, corresponding to current density of 120.24mA/m2. The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.