Displaying publications 141 - 160 of 256 in total

Abstract:
Sort:
  1. Siar CH, Kawakami T, Buery RR, Nakano K, Tomida M, Tsujigiwa H, et al.
    Eur J Med Res, 2011 Nov 10;16(11):501-6.
    PMID: 22027644
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (CCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1-Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.
    Matched MeSH terms: Ligands
  2. Ng CH, Lim CW, Teoh SG, Fun HK, Usman A, Ng SW
    Inorg Chem, 2002 Jan 14;41(1):2-3.
    PMID: 11782136
    Treatment of vanadium(V) oxide with an ethanol-concentrated sulfuric acid mixture, followed by the addition of an equimolar amount of beta-alanine and sodium hydroxide, and finally raising the pH to 3.9 with sodium carbonate solution, under continuous heating in a water bath and in the presence of air, leads to the polyionic sodium cyclo-[mu(6)-(sulfato-O,O',O'')tris[mu-(beta-alanine-O,O')-mu-oxo]tris(mu-hydroxo-mu-oxo)hexa[oxovanadium(V)]] sulfate tridecahydrate which crystallizes in the monoclinic P2(1)/n space group [a = 9.5192(4), b = 20.1185(9), c = 22.6174(9) A, beta = 97.011(1) degrees; Z = 4]. The crown-shaped polyoxovanadium(V) cluster cation, with carboxylate-bridging amino acid ligands, has an Anderson structure with two unique capping sulfato ligands. Its structural analysis, together with IR, UV-vis, and preliminary data on its solution properties, is presented.
    Matched MeSH terms: Ligands
  3. Wong SHM, Fang CM, Loh HS, Ngai SC
    Anticancer Agents Med Chem, 2023;23(7):817-831.
    PMID: 36380402 DOI: 10.2174/1871520623666221114095733
    AIMS: The aim of this study was to sensitize the resistant breast adenocarcinoma cells towards Tumour Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced apoptosis.

    BACKGROUND: Breast cancer is a heterogeneous disease involving complex mechanisms. TRAIL is a potential anticancer candidate for targeted treatment due to its selective killing effects on neoplastic cells. Nonetheless, resistance occurs in many cancers either intrinsically or after multiple treatments.

    OBJECTIVE: Therefore, this research investigated whether the combination of Trichostatin A (TSA) and Zebularine (Zeb) (TZ) followed by TRAIL (TZT) could sensitize the human breast adenocarcinoma cells towards apoptosis.

    METHODS: The breast adenocarcinoma cells, MDA-MB-231, MCF-7 and E-MDA-MB-231 (E-cadherin re-expressed MDA-MB-231) were treated with TSA, Zeb, TZ, TRAIL and TZT. The cells were subjected to hematoxylin and eosin (H & E) staining and FITC-Annexin V/Propidium Iodide apoptosis detection prior to proteome profiling.

    RESULTS: Based on morphological observation, apoptosis was induced in all cells treated with all treatment regimens though it was more evident for the TZT-treated cells. In the apoptosis detection analysis, TZ increased early apoptosis significantly in MDA-MB-231 and MCF-7 while TRAIL induced late apoptosis significantly in E-MDA-MB-231. Based on the proteome profiling on MDA-MB-231, TRAIL R2 and Fas expression was increased. For E-MDA-MB- 231, down-regulation of catalase, paraoxonase-2 (PON2), clusterin, an inhibitor of apoptosis proteins (IAPs) and cell stress proteins validated the notion that E-cadherin re-expression enhances TZT anti-cancer efficacy. Similar trend was observed in MCF-7 whereby TZT treatment down-regulated the anti-apoptotic catalase and PON2, increased the proapoptotic, B cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad) and Bcl-2-associated X (Bax), second mitochondria-derived activator of caspase (SMAC) and HtrA serine peptidase 2 (HTRA2) as well as TRAIL receptors (TRAIL R1 and TRAIL R2).

    CONCLUSION: TZ treatment serves as an efficient treatment regimen for MDA-MB-231 and MCF-7, while TRAIL serves as a better treatment option for E-MDA-MB-231. Therefore, future studies on E-cadherin's positive regulatory role in TRAIL-induced apoptosis are warranted.

    Matched MeSH terms: Ligands
  4. Radhakrishnan, N., Lam, K. W., Norhaizan, M. E.
    MyJurnal
    Carica papaya (papaya) fruits are available throughout the world and it is well accepted as food or as a quasi-drug. Aqueous papaya leaves extract have been used as treatment for dengue fever. This prompted us to carry out the docking study on these nine selected ligands (phyto-constituents of papaya) which are carpaine, dehydrocarpaine I and II, cardenolide, p-coumaric acid, chlorogenic acid, caricaxanthin, violaxanthin and zeaxanthin. These phytoconstituents were evaluated on the docking behaviour of dengue serotype 3 RNA-dependent RNA polymerase (RdRp); influenza A (H1N9) virus neuraminidase (NA); chikungunya virus glycoprotein (E3-E2-E1) and chikungunya virus non-structural protein2 (nsP2) protease using Discovery Studio Version 3.1. In addition, molecular physicochemical, drug-likeness, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) and TOPKAT (Toxicity Prediction by Komputer Assisted Technology) analyses were done. The molecular physicochemical analysis revealed that cardenolide and p-coumaric acid (2 ligands) complied with Lipinski’s rule of five. Dehydrocarpaine II, cardenolide, caricaxanthin, violaxanthin and zeaxanthin all the five ligands were predicted to have plasma protein binding (PPB) effect. Docking studies and binding free energy calculations revealed that p-coumaric acid exhibited very least binding energy irrespective of its target protein. Hence, the results of this present study exhibited the potential of these nine ligands as antiviral agent.
    Matched MeSH terms: Ligands
  5. Siti Noriah Mohd Shotor, Nur Anis Atirah Zulkiflee
    MyJurnal
    This paper deals with a review of the inhibition activity of a Schiff bases on the deterioration of mild steel in hydrochloric acid media. Two Schiff base ligands namely N,N’- Bis(salicylidene) ethylenediamine (Sadimine) and N,N’-Bis(bromosalicylidene)- ethylenediamine (Brosadimine) were synthesized from the condensation reactions of salicylaldehyde or 5-bromosalicylaldehyde with ethylenediamine respectively and evaluated as corrosion inhibitor for mild steel in 1 M HCl solution using weight loss method. The use of inhibitors is one of the most practical methods for protection of mild steel against corrosion in acidic media. Schiff bases are widely being employed in such applications. This paper highlights the influence of structure–inhibition activity relationship of Schiff base compounds
    on their performance as corrosion inhibitors of mild steel in acid media. Sadimine and
    Brosadimine show appreciable corrosion inhibition efficiency against the corrosion of mild
    steel in 1 M HCl solution at room temperature. It has been found that Brosadimine shows
    greater corrosion inhibition efficiency than Sadimine due to extra halogen group presence in
    the structure. As the concentration of studied inhibitors increases, the corrosion inhibition
    efficiency of the prepared compounds also increases. This study demonstrated that corrosion
    inhibitors for metals and alloys can preserve the quality and life of metals from corrosion.
    Matched MeSH terms: Ligands
  6. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Curr Mol Pharmacol, 2020;13(3):233-244.
    PMID: 31713493 DOI: 10.2174/1874467212666191111110429
    BACKGROUND: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population.

    METHODS: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking.

    RESULTS: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays.

    CONCLUSION: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.

    Matched MeSH terms: Ligands
  7. Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE
    Drug Metab Bioanal Lett, 2022;15(1):51-63.
    PMID: 35049443 DOI: 10.2174/1872312815666220113125232
    BACKGROUND: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population.

    METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.

    RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.

    CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.

    Matched MeSH terms: Ligands
  8. Naqeebullah, Farina Y, Chan KM, Mun LK, Rajab NF, Ooi TC
    Molecules, 2013 Jul 22;18(7):8696-711.
    PMID: 23881054 DOI: 10.3390/molecules18078696
    Three diorganotin(IV) complexes of the general formula R2Sn[RcC(O)N(RN)O] (Rc = aryl, RN = Alkyl) have been synthesized by refluxing in toluene the corresponding diorganotin(IV) oxides with the free ligand N-methyl p-fluorobenzohydroxamic acid, using a Dean and Stark water separator. The ligand was derived from the reaction of the corresponding p-fluorobenzoyl chloride and N-methylhydroxylamine hydrochloride in the presence of sodium hydrogen carbonate. The isolated free ligand and its respective diorganotin compounds have been characterized by elemental analysis, IR and 1H-, 13C-, 119Sn-NMR spectroscopies. The crystal structures of the diorganotin complexes have been confirmed by single crystal X-ray diffraction methods. The investigations carried out on the diorganotin(IV) complexes of N-methyl p-fluorobenzohydroxamic acid confirmed a 1:2 stoichiometry. The complex formation took place through the O,O-coordination via the carbonyl oxygen and subsequent deprotonated hydroxyl group to the tin atom. The crystal structures of three diorganotin complexes were determined and were found to adopt six coordination geometries at the tin centre with coordination to two ligand moieties.
    Matched MeSH terms: Ligands
  9. Sakurama K, Kawai A, Tuan Giam Chuang V, Kanamori Y, Osa M, Taguchi K, et al.
    ACS Omega, 2018 Oct 31;3(10):13790-13797.
    PMID: 30411049 DOI: 10.1021/acsomega.8b02057
    Aripiprazole (ARP), a quinolinone derivative, is an atypical antipsychotic drug that is used in the treatment of schizophrenia. ARP has an extensive distribution and more than 99% of the ARP and dehydro-ARP, the main active metabolite, is bound to plasma proteins. However, information regarding the protein binding of ARP is limited. In this study, we report on a systematic study of the protein binding of ARP. The interaction of ARP and structurally related compounds with human serum albumin (HSA) was examined using equilibrium dialysis, circular dichroism (CD) spectroscopy, fluorescent probe displacement, and an X-ray crystallographic analysis. The binding affinities (nK) for ARP and its main metabolite, dehydro-ARP with HSA were found to be significantly higher than other structurally related compounds. The results of equilibrium dialysis experiments and CD spectral data indicated that the chloro-group linked to the phenylpiperazine ring in the ARP molecule plays a major role in the binding of these ligands to HSA. Furthermore, fluorescent probe displacement results indicated that ARP appears to bind at the site II pocket in subdomain III. A detailed CD spectral analysis suggests that the chloro-group linked to the phenylpiperazine ring may control the geometry of the ARP molecule when binding in the site II binding pocket. X-ray crystallographic analysis of the ARP-HSA complex revealed that the distance between the chlorine atom at the 3-positon of dichlorophenyl-piperazine on ARP and the sulfur atom of Cys392 in HSA was 3.4-3.6 Å. A similar halogen bond interaction has also been observed in the HSA structure complexed with diazepam, which also contains a chloro-group. Thus, the mechanism responsible for the binding of ARP to a protein elucidated here should be relevant for assessing the pharmacokinetics and pharmacodynamics of ARP in various clinical situations and for designing new drugs.
    Matched MeSH terms: Ligands
  10. Kumar J, Ismail Z, Hatta NH, Baharuddin N, Hapidin H, Get Bee YT, et al.
    Curr Drug Targets, 2018;19(8):907-915.
    PMID: 28494749 DOI: 10.2174/1389450118666170511144302
    In the past decade, many studies have highlighted the role of metabotropic glutamate receptor subtype 5 (mGlu5) modulators in attenuating alcohol-related biological effects such as alcohol consumption, alcohol-seeking and relapse-like behaviors. Taken together, these findings suggest that pharmacological agents acting at mGlu5 could be promising tools in curbing inebriation. mGlu5s are present abundantly in brain regions known to be involved in emotion regulation, motivation and drug administration. On a cellular level, they are primarily located at the postsynaptic part of the neuron where the receptor is functionally linked to various downstream proteins that are involved in cell signaling and gene transcription that mediate the alcohol-induced neuroplasticity. As well, the discovery of a functional link between mGlu5 and a specific isozyme, Protein Kinase C epsilon (PKCε) in mediating the attenuating effects of selective negative allosteric modulators of mGlu5 such as methyl- 6(phenylethynyl)pyridine (MPEP) and 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (MTEP) has sparked interesting speculations. In this article, we shall review the following: the effects of acute and chronic alcohol intake on mGlu5 signaling; the effects of mGlu5 ligands on alcohol-related neurobehavioral changes that are currently being studied both at pre-clinical and clinical stages; and the mechanisms underlying the pharmacological effects of these drugs.
    Matched MeSH terms: Ligands
  11. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Int J Toxicol, 2022;41(5):355-366.
    PMID: 35658727 DOI: 10.1177/10915818221103790
    Cathine is the stable form of cathinone, the major active compound found in khat (Catha edulis Forsk) plant. Khat was found to inhibit major phase I drug metabolizing cytochrome P450 (CYP) enzyme activities in vitro and in vivo. With the upsurge of khat consumption and the potential use of cathine to combat obesity, efforts should be channelled into understanding potential cathine-drug interactions, which have been rather limited. The present study aimed to assess CYPs activity and inhibition by cathine in a high-throughput in vitro fluorescence-based enzyme assay and molecular docking analysis to identify how cathine interacts within various CYPs' active sites. The half maximal inhibitory concentration (IC50) values of cathine determined for CYP2A6 and CYP3A4 were 80 and 90 μM, while CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2 and CYP3A5 showed no significant inhibition. Furthermore, in Ki analysis, the Lineweaver-Burk plots depicted non-competitive mixed inhibition of cathine on both CYP2A6 and CYP3A4 with Ki value of 63 and 100 μM, respectively. Cathine showed negligible time-dependent inhibition on CYPs. Further, molecular docking studies showed that cathine was bound to CYP2A6 via hydrophobic, hydrogen and π-stacking interactions and formed hydrophobic and hydrogen bonds with active site residues in CYP3A4. Both molecular docking prediction and in vitro outcome are in agreement, granting more detailed insights for predicting CYPs metabolism besides the possible cathine-drug interactions. Cathine-drug interactions may occur with concomitant consumption of khat or cathine-containing products with medications metabolized by CYP2A6 and CYP3A4.
    Matched MeSH terms: Ligands
  12. Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, et al.
    Diabetes Res Clin Pract, 2018 Feb;136:52-77.
    PMID: 29196152 DOI: 10.1016/j.diabres.2017.11.018
    Nanotechnology science has been diverged its application in several fields with the advantages to operate with nanometric range of objects. Emerging field of nanotechnology has been also being approached and applied in medical biology for improved efficacy and safety. Increased success in therapeutic field has focused several approaches in the treatment of the common metabolic disorder, diabetes. The development of nanocarriers for improved delivery of different oral hypoglycemic agents compared to conventional therapies includes nanoparticles (NPs), liposomes, dendrimer, niosomes and micelles, which produces great control over the increased blood glucose level and thus becoming an eye catching and most promising technology now-a-days. Besides, embellishment of nanocarriers with several ligands makes it more targeted delivery with the protection of entrapped hypoglycaemic agents against degradation, thereby optimizing prolonged blood glucose lowering effect. Thus, nanocarriers of hypoglycemic agents provide the aim towards improved diabetes management with minimized risk of acute and chronic complications. In this review, we provide an overview on distinctive features of each nano-based drug delivery system for diabetic treatment and current NPs applications in diabetes management.
    Matched MeSH terms: Ligands
  13. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Ligands
  14. Khan M, Alam A, Khan KM, Salar U, Chigurupati S, Wadood A, et al.
    Bioorg Chem, 2018 12;81:157-167.
    PMID: 30125730 DOI: 10.1016/j.bioorg.2018.07.038
    Novel derivatives of flurbiprofen 1-18 including flurbiprofen hydrazide 1, substituted aroyl hydrazides 2-9, 2-mercapto oxadiazole derivative 10, phenacyl substituted 2-mercapto oxadiazole derivatives 11-15, and benzyl substituted 2-mercapto oxadiazole derivatives 16-18 were synthesized and characterized by EI-MS, 1H and 13C NMR spectroscopic techniques. All derivatives 1-18 were screened for α-amylase inhibitory activity and demonstrated a varying degree of potential ranging from IC50 = 1.04 ± 0.3 to 2.41 ± 0.09 µM as compared to the standard acarbose (IC50 = 0.9 ± 0.04 µM). Out of eighteen compounds, derivatives 2 (IC50 = 1.69 ± 0.1 µM), 3 (IC50 = 1.04 ± 0.3 µM), 9 (IC50 = 1.25 ± 1.05 µM), and 13 (IC50 = 1.6 ± 0.18 µM) found to be excellent inhibitors while rest of the compounds demonstrated comparable inhibition potential. A limited structure-activity relationship (SAR) was established by looking at the varying structural features of the library. In addition to that, in silico study was conducted to understand the binding interactions of the compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: Ligands
  15. Salar U, Khan KM, Chigurupati S, Syed S, Vijayabalan S, Wadood A, et al.
    Med Chem, 2019;15(1):87-101.
    PMID: 30179139 DOI: 10.2174/1573406414666180903162243
    BACKGROUND: Despite many side effects associated, there are many drugs which are being clinically used for the treatment of type-II diabetes mellitus (DM). In this scenario, there is still need to develop new therapeutic agents with more efficacy and less side effects. By keeping in mind the diverse spectrum of biological potential associated with coumarin and thiazole, a hybrid class based on these two heterocycles was synthesized.

    METHOD: Hydrazinyl thiazole substituted coumarins 4-20 were synthesized via two step reaction. First step was the acid catalyzed reaction of 3-formyl/acetyl coumarin derivatives with thiosemicarbazide to form thiosemicarbazone intermediates 1-3, followed by the reaction with different phenacyl bromides to afford products 4-20. All the synthetic analogs 4-20 were characterized by different spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemical assignment of the iminic double bond was carried out by the NOESY experiments. Elemental analysis was found in agreement with the calculated values.

    RESULTS: Compounds 4-20 were screened for α-amylase inhibitory activity and showed good activity in the range of IC50 = 1.829 ± 0.102-3.37 ± 0.17 µM as compared to standard acarbose (IC50 = 1.819 ± 0.19 µM). Compounds were also investigated for their DPPH and ABTS radical scavenging activities and displayed good radical scavenging potential. In addition to that molecular modelling study was conducted on all compounds to investigate the interaction details of compounds 4- 20 (ligands) with active site (receptor) of enzyme.

    CONCLUSION: The newly identified hybrid class may serve as potential lead candidates for the management of diabetes mellitus.

    Matched MeSH terms: Ligands
  16. McGuffin LJ, Adiyaman R, Maghrabi AHA, Shuid AN, Brackenridge DA, Nealon JO, et al.
    Nucleic Acids Res, 2019 07 02;47(W1):W408-W413.
    PMID: 31045208 DOI: 10.1093/nar/gkz322
    The IntFOLD server provides a unified resource for the automated prediction of: protein tertiary structures with built-in estimates of model accuracy (EMA), protein structural domain boundaries, natively unstructured or disordered regions in proteins, and protein-ligand interactions. The component methods have been independently evaluated via the successive blind CASP experiments and the continual CAMEO benchmarking project. The IntFOLD server has established its ranking as one of the best performing publicly available servers, based on independent official evaluation metrics. Here, we describe significant updates to the server back end, where we have focused on performance improvements in tertiary structure predictions, in terms of global 3D model quality and accuracy self-estimates (ASE), which we achieve using our newly improved ModFOLD7_rank algorithm. We also report on various upgrades to the front end including: a streamlined submission process, enhanced visualization of models, new confidence scores for ranking, and links for accessing all annotated model data. Furthermore, we now include an option for users to submit selected models for further refinement via convenient push buttons. The IntFOLD server is freely available at: http://www.reading.ac.uk/bioinf/IntFOLD/.
    Matched MeSH terms: Ligands
  17. Angelopoulou E, Paudel YN, Piperi C
    ACS Chem Neurosci, 2020 03 04;11(5):663-673.
    PMID: 32017530 DOI: 10.1021/acschemneuro.9b00678
    Myasthenia gravis (MG) is an autoimmune T cell-dependent B cell-mediated disorder of the neuromuscular junction (NMJ) characterized by fluctuating skeletal muscle weakness, most commonly attributed to pathogenic autoantibodies against postsynaptic nicotinic acetylcholine receptors (AChRs). Although MG pathogenesis is well-documented, there are no objective biomarkers that could effectively correlate with disease severity or MG clinical subtypes, and current treatment approaches are often ineffective. The receptor for advanced glycation end products (RAGE) is a multiligand cell-bound receptor highly implicated in proinflammatory responses and autoimmunity. Preclinical evidence demonstrates that RAGE and its ligand S100B are upregulated in rat models of experimental autoimmune myasthenia gravis (EAMG). S100B-mediated RAGE activation has been shown to exacerbate EAMG, by enhancing T cell proinflammatory responses, aggravating T helper (Th) subset imbalance, increasing AChR-specific T cell proliferative capacity, and promoting the production of antibodies against AChRs from the spleen. Soluble sRAGE and esRAGE, acting as decoys of RAGE ligands, are found to be significantly reduced in MG patients. Moreover, MG has been associated with increased serum levels of S100A12, S100B and HMGB1. Several studies have shown that the presence of thymic abnormalities, the onset age of MG, and the duration of the disease may affect the levels of these proteins in MG patients. Herein, we discuss the emerging role of RAGE and its ligands in MG immunopathogenesis, their clinical significance as promising biomarkers, as well as the potential therapeutic implications of targeting RAGE signaling in MG treatment.
    Matched MeSH terms: Ligands
  18. Usman A, Razak IA, Chantrapromma S, Fun HK, Sreekanth A, Sivakumar S, et al.
    Acta Crystallogr C, 2002 Sep;58(Pt 9):m461-3.
    PMID: 12205370
    One half of the molecule of the title complex, [Mn(C(14)H(13)N(4)S)(2)], is related to the other half by a twofold axis passing through the Mn atom. This high-spin Mn atom is six-coordinated, in an octahedral geometry, by the azomethine N, the pyridyl N and the thiolate S atom of two planar 1-(pyridin-2-yl)ethanone N(4)-phenylthiosemicarbazone ligands. In the crystal, the molecules are interconnected by N-H.S and C-H.N interactions, forming a three-dimensional network.
    Matched MeSH terms: Ligands
  19. Kamariah Ibrahim, Abubakar Danjuma Abdullahi, Nor Azian Abdul Murad, Roslan Harun, Rahman Jamal
    MyJurnal
    Glioblastoma multiforme (GBM) is a high-grade brain tumor of which the survival patients remain poor.
    Tousled-like kinase 1 (TLK1), a serine-threonine kinase, was identified to be overexpressed in cancers such
    as GBM. TLK1 plays an important role in controlling survival pathways. To date, there is no structure
    available for TLK1 as well as its inhibitors. We aimed to create a homology model of TLK1 and to identify
    suitable molecular inhibitors that are likely to bind and inhibit TLK1 activity via in silico high-throughput
    virtual screening (HTVS) protein-ligand docking. The 3D homology models of TLK1 were derived from
    various servers. All models were evaluated using Swiss Model QMEAN server. Validation was performed
    using multiple tools. Energy minimization was performed using YASARA. Subsequently, HTVS was
    performed using Molegro Virtual Docker 6.0 and ligands derived from ligand.info database. Drug-like
    molecules were filtered using ADME-Tox filtering program. Best homology model was obtained from the
    Aurora B kinase (PDB ID:4B8M) derived from Xenopus levias structure that share sequence similarity with
    human TLK1. Two compounds were identified from HTVS to be the potential inhibitors as it did not violate
    the Lipinski rule of five and the CNS-based filter as a potential drug-like molecule for GBM
    Matched MeSH terms: Ligands
  20. Jian Fui C, Xin Ting T, Sarjadi MS, Amin Z, Sarkar SM, Musta B, et al.
    ACS Omega, 2021 Mar 16;6(10):6766-6779.
    PMID: 33748590 DOI: 10.1021/acsomega.0c05840
    Highly active natural pandanus-extracted cellulose-supported poly(hydroxamic acid)-Cu(II) complex 4 was synthesized. The surface of pandanus cellulose was modified through graft copolymerization using purified methyl acrylate as a monomer. Then, copolymer methyl acrylate was converted into a bidentate chelating ligand poly(hydroxamic acid) via a Loosen rearrangement in the presence of an aqueous solution of hydroxylamine. Finally, copper species were incorporated into poly(hydroxamic acid) via the adsorption process. Cu(II) complex 4 was fully characterized by Fourier transform infrared (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The cellulose-supported Cu(II) complex 4 was successfully applied (0.005 mol %) to the Ullmann etherification of aryl, benzyl halides, and phenacyl bromide with a number of aromatic phenols to provide the corresponding ethers with excellent yield [benzyl halide (70-99%); aryl halide (20-90%)]. Cu(II) complex 4 showed high stability and was easily recovered from the reaction mixture. It could be reused up to seven times without loss of its original catalytic activity. Therefore, Cu(II) complex 4 can be commercially utilized for the preparation of various ethers, and this synthetic technique could be a part in the synthesis of natural products and medicinal compounds.
    Matched MeSH terms: Ligands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links