Displaying publications 141 - 160 of 337 in total

Abstract:
Sort:
  1. Strand TA, Ulak M, Kvestad I, Henjum S, Ulvik A, Shrestha M, et al.
    Pediatr Res, 2018 11;84(5):611-618.
    PMID: 29967525 DOI: 10.1038/s41390-018-0072-2
    BACKGROUND: Many children worldwide have poor vitamin B12 status. The objective of this study was to estimate association between maternal and infant vitamin B12 status and long-term growth.

    METHODS: We randomly selected 500 Nepali mother-infant pairs and measured maternal intake and infant and maternal vitamin B12 status using plasma cobalamin, total plasma homocysteine, and methylmalonic acid concentrations. We revisited available children when they were 5 years old and measured growth. The associations between intake and maternal and infant markers of vitamin B12 and growth were estimated in multiple linear regression models adjusting for relevant confounders (n = 331).

    RESULTS: Maternal vitamin B12 intake and status and vitamin B12 status in infancy predicted linear growth at 5 years of age, but not during infancy. Each microgram increase in the vitamin B12 intake of the mother during infancy was associated with an increase in height of 0.4 (0.2, 0.6) height-for-age z-scores and 1.7 (0.7, 2.7) cm around the child's fifth birthday.

    CONCLUSION: Vitamin B12 status and intake in early life is an important determinant for linear growth at school age. Our findings should be verified in randomized, placebo controlled trials before translated into public health recommendations.

    Matched MeSH terms: Limit of Detection
  2. Mohd Hassan FW, Muggundha Raoov, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al.
    J Sep Sci, 2018 Oct;41(19):3751-3763.
    PMID: 30125466 DOI: 10.1002/jssc.201800326
    This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000 ng/L) with coefficient of determination (R2 ) of ≥0.9951, low limits of detection (3-16 ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations 
    Matched MeSH terms: Limit of Detection
  3. Mukhtar NH, Mamat NA, See HH
    J Pharm Biomed Anal, 2018 Sep 05;158:184-188.
    PMID: 29883881 DOI: 10.1016/j.jpba.2018.05.044
    A sample pre-treatment method based on a dynamic mixed matrix membrane tip extraction followed by capillary electrophoresis with contactless conductivity detection (CE-C4D) was evaluated for the determination of tobramycin in human plasma. The extraction tip device consisted of a cellulose triacetate membrane tip wall immobilised with 15% (w/w) of hydrophilic lipophilic balance (HLB) nanoparticles as adsorbent. The extraction was performed dynamically by withdrawing/dispensing the plasma sample through the tip device followed by desorption into 20 μL of acidified aqueous solution at pH 3 prior to the CE-C4D analysis. Under the optimum conditions, the detection limit of the method for tobramycin was 10 ng/mL, with intraday and interday repeatability RSDs of 3.5% and 4.5%, respectively. Relative recoveries in spiked human plasma were 99.6%-99.9%. The developed approach was successfully demonstrated for the quantification of tobramycin in human plasma samples.
    Matched MeSH terms: Limit of Detection
  4. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al.
    Anal Biochem, 2018 09 01;556:136-144.
    PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002
    Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
    Matched MeSH terms: Limit of Detection
  5. Zakaria N, Ramli MZ, Ramasamy K, Meng LS, Yean CY, Banga Singh KK, et al.
    Anal Biochem, 2018 08 15;555:12-21.
    PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031
    A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
    Matched MeSH terms: Limit of Detection
  6. Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM
    PMID: 29894935 DOI: 10.1016/j.jchromb.2018.06.009
    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
    Matched MeSH terms: Limit of Detection
  7. Mahmuda A, Bande F, Abdulhaleem N, Abd Majid R, Awang Hamat R, Omar Abdullah W, et al.
    Iran J Parasitol, 2018 8 3;13(2):204-214.
    PMID: 30069204
    Background: Currently, most of the available serological diagnostic kits for strongyloidiasis are based on the use of the crude antigens of Strongyloides ratti, which are good, but with less sensitivity towards the infection. Hence, this study aimed to produce and evaluate monoclonal antibody for detecting soluble parasite antigen in animal sera.

    Methods: The study was conducted in the Department of Medical Microbiology and Parasitology, University Putra Malaysia in 2014-2017. Saline extract protein from the infective larvae of S. ratti was used to immunize BALB/c mice and subsequent fusion of the B-cells with myeloma cells (SP2/0) using 50% PEG. The hybridomas were cultured in HAT medium and cloned by limiting dilutions. Positive hybrids were screened by indirect ELISA. The ascites fluid from the antibody-secreting hybridoma was purified and the MAb was characterized by western-blots and evaluated in sandwich ELISA for reactivity against the homologous and heterologous antigens.

    Results: An IgG1 that recognizes a 30 and 34 kDa protein bands was obtained. The MAb was recognized by all S. ratti-related antigens and cross-reacted with only Toxocara canis antigens in both assays. The minimum antigen detection limit was found to be 5 ng/ml. All antibody-positive rat and dog sera evaluated have shown antigen-positive reactions in Sandwich-ELISA.

    Conclusion: The MAb produced, was able to detect antigens in strongyloidiasis and toxocariasis in animal models and may also be useful for the serological detection of active strongyloidiasis and visceral toxocariasis in human sera.

    Matched MeSH terms: Limit of Detection
  8. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
    Matched MeSH terms: Limit of Detection
  9. Al-Qaim FF, Mussa ZH, Yuzir A
    Anal Bioanal Chem, 2018 Aug;410(20):4829-4846.
    PMID: 29806068 DOI: 10.1007/s00216-018-1120-9
    The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
    Matched MeSH terms: Limit of Detection
  10. Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH
    J Biophotonics, 2018 08;11(8):e201700363.
    PMID: 29570957 DOI: 10.1002/jbio.201700363
    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
    Matched MeSH terms: Limit of Detection*
  11. Ajab H, Dennis JO, Abdullah MA
    Int J Biol Macromol, 2018 Jul 01;113:376-385.
    PMID: 29486259 DOI: 10.1016/j.ijbiomac.2018.02.133
    A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions.
    Matched MeSH terms: Limit of Detection*
  12. Ravikumar A, Panneerselvam P, Morad N
    ACS Appl Mater Interfaces, 2018 Jun 20;10(24):20550-20558.
    PMID: 29792319 DOI: 10.1021/acsami.8b05041
    In this paper, we propose a metal-polydopamine (MPDA) framework with a specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability toward various organic fluorophore such as aminoethylcoumarin acetate, 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine, and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ions. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM-labeled ssDNA was adsorbed onto the MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor, highly sensitive and selective determination of Hg2+ and Ag+ ions is achieved through exonuclease III signal amplification activity. The detection limits of Hg2+ and Ag+ achieved to be 1.3 and 34 pM, respectively, were compared to co-existing metal ions and graphene oxide-based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.
    Matched MeSH terms: Limit of Detection
  13. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Md Noor SS, Ahmad Raston NH, et al.
    Sensors (Basel), 2018 Jun 14;18(6).
    PMID: 29899214 DOI: 10.3390/s18061932
    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.
    Matched MeSH terms: Limit of Detection
  14. Kafi AKM, Naqshabandi M, Yusoff MM, Crossley MJ
    Enzyme Microb Technol, 2018 Jun;113:67-74.
    PMID: 29602389 DOI: 10.1016/j.enzmictec.2017.11.006
    A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, KSand electron transfer co-efficient α were found as 0.57s-1and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H2O2was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2determination. The linear range is from 1.0×10-7to 1.2×10-4M with a detection limit of 2.2.0×10-8M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability.
    Matched MeSH terms: Limit of Detection
  15. Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, et al.
    Biosens Bioelectron, 2018 Jun 01;107:145-152.
    PMID: 29455024 DOI: 10.1016/j.bios.2018.02.024
    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL-1. Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature.
    Matched MeSH terms: Limit of Detection
  16. Jothi L, Neogi S, Jaganathan SK, Nageswaran G
    Biosens Bioelectron, 2018 May 15;105:236-242.
    PMID: 29412948 DOI: 10.1016/j.bios.2018.01.040
    A novel nitrogen/argon (N2/Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N2/Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N2/Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔEP) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N2/Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA.
    Matched MeSH terms: Limit of Detection
  17. Foo CY, Lim HN, Mahdi MA, Wahid MH, Huang NM
    Sci Rep, 2018 May 09;8(1):7399.
    PMID: 29743664 DOI: 10.1038/s41598-018-25861-3
    Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
    Matched MeSH terms: Limit of Detection
  18. Salihu SO, Bakar NKA
    Talanta, 2018 May 01;181:401-409.
    PMID: 29426532 DOI: 10.1016/j.talanta.2018.01.041
    In this study, a simple sample preparation method was developed for the determination of tri-and hexavalent chromium in water samples. It utilizes a pre-heated customized glass tube (CGT), to supply the heat energy required for the reaction of Cr(III) with ammonium pyrrolidinedithiocarbamate (APDC). The products of the Cr complexes, tris(1-pyrrolidinecarbodithioato)chromium(III) and bis(1-pyrrolidinecarbodithioato)[1-pyrrolidinecarbodithio(thioperoxoato)]chromium(III) were chromatographed with Shimadzu LC-20AT and Zobax Eclipse C18 (150mm × 4.6mm, 5µm) column using ACN: Water, (7:3, v/v) as the mobile phase. The concentration of Cr(III) ranged from 0.06mgL-1to 0.09mgL-1and that of Cr(VI) was between 0.02mgL-1to 0.04mgL-1in the samples. Percentage recoveries from spiked real samples were between 87% (tap water) to 110% (wastewater) for Cr(III) and 92% (pond water) to 117% (tap water) for Cr(VI). The limits of detection (LODs) were 0.0029mgL-1and 0.0014mg/L-1for Cr(III) Cr(VI) respectively. While the limits of quantitation (LOQs), were 0.0098mgL-1and 0.0047mgL-1for Cr(III) and Cr(VI) respectively. Method precision (RSD (%)) was 3.3% and 3.5% for Cr(III) and Cr(VI) respectively. The developed method was applied for the speciation analysis of chromium in drinking water, tap water, wastewater, river water, and pond water samples. Our findings proved the method is simple and inexpensive. The method was validated by the analysis of a certified reference material (CRM) SLRS-4. The percentage recovery and RSD(%) from the spiked CRM were 91% and 115% and 0.32% and 1.4% for Cr(III) and Cr(VI) respectively.
    Matched MeSH terms: Limit of Detection
  19. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Limit of Detection
  20. Mohd NI, Zain NNM, Raoov M, Mohamad S
    R Soc Open Sci, 2018 Apr;5(4):171500.
    PMID: 29765632 DOI: 10.1098/rsos.171500
    A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient (R2 ) in the range of 0.991-0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l-1 (atrazine) and 1.22 µg l-1 (propazine), and the limit of quantitation was 3.54 µg l-1 (atrazine) and 4.07 µg l-1 (propazine). Satisfactory recoveries in the range of 81-108% were determined in milk samples at 5 and 1000 µg l-1, respectively, with low relative standard deviation, n = 3 of 0.301-7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links