Displaying publications 141 - 160 of 1819 in total

Abstract:
Sort:
  1. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    PLoS One, 2016;11(2):e0148201.
    PMID: 26840430 DOI: 10.1371/journal.pone.0148201
    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
    Matched MeSH terms: Phylogeny*
  2. Yong HS, Lim PE, Tan J, Song SL, Suana IW, Eamsobhana P
    PLoS One, 2015;10(6):e0129455.
    PMID: 26090853 DOI: 10.1371/journal.pone.0129455
    Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. caudata from the northern hemisphere (Peninsular Malaysia, East Malaysia, Thailand) was distinctly different from the southern hemisphere (Indonesia: Java, Bali and Lombok), without common haplotype between them. Phylogenetic analysis revealed two distinct clades (northern and southern hemispheres), indicating distinct genetic lineage. The uncorrected 'p' distance for the concatenated COI+COII+16S nucleotide sequences between the taxa from the northern and southern hemispheres ('p' = 4.46-4.94%) was several folds higher than the 'p' distance for the taxa in the northern hemisphere ('p' = 0.00-0.77%) and the southern hemisphere ('p' = 0.00%). This distinct difference was also reflected by concatenated COI+COII+16S+28S+ITS-2 nucleotide sequences with an uncorrected 'p' distance of 2.34-2.69% between the taxa of northern and southern hemispheres. In accordance with the type locality the Indonesian taxa belong to the nominal species. Thus the taxa from the northern hemisphere, if they were to constitute a cryptic species of the B. caudata species complex based on molecular data, need to be formally described as a new species. The Thailand and Malaysian B. caudata populations in the northern hemisphere showed distinct genetic structure and phylogeographic pattern.
    Matched MeSH terms: Phylogeny*
  3. Fiala I, Hlavničková M, Kodádková A, Freeman MA, Bartošová-Sojková P, Atkinson SD
    Mol Phylogenet Evol, 2015 May;86:75-89.
    PMID: 25797924 DOI: 10.1016/j.ympev.2015.03.004
    In order to clarify the phylogenetic relationships among the main marine myxosporean clades including newly established Ceratonova clade and scrutinizing their evolutionary origins, we performed large-scale phylogenetic analysis of all myxosporean species from the marine myxosporean lineage based on three gene analyses and statistical topology tests. Furthermore, we obtained new molecular data for Ceratonova shasta, C. gasterostea, eight Ceratomyxa species and one Myxodavisia species. We described five new species: Ceratomyxa ayami n. sp., C. leatherjacketi n. sp., C. synaphobranchi n. sp., C. verudaensis n. sp. and Myxodavisia bulani n. sp.; two of these formed a new, basal Ceratomyxa subclade. We identified that the Ceratomyxa clade is basal to all other marine myxosporean lineages, and Kudoa with Enteromyxum are the most recently branching clades. Topologies were least stable at the nodes connecting the marine urinary clade, the marine gall bladder clade and the Ceratonova clade. Bayesian inference analysis of SSU rDNA and the statistical tree topology tests suggested that Ceratonova is closely related to the Enteromyxum and Kudoa clades, which represent a large group of histozoic species. A close relationship between Ceratomyxa and Ceratonova was not supported, despite their similar myxospore morphologies. Overall, the site of sporulation in the vertebrate host is a more accurate predictor of phylogenetic relationships than the morphology of the myxospore.
    Matched MeSH terms: Phylogeny*
  4. Cannon CH, Manos PS
    Syst Biol, 2002 7 16;50(6):860-80.
    PMID: 12116637
    Fruit type in the genus Lithocarpus (Fagaceae) includes both classic oak acorns and novel modifications. Bornean taxa with modified fruits can be separated into two sections (Synaedrys and Lithocarpus) based on subtle shape differences. By following strict criteria for homology and representation, this variation in shape can be captured and the sections distinguished by using elliptic Fourier or eigenshape analysis. Phenograms of fruit shape, constructed by using restricted maximum likelihood techniques and these morphometric descriptors, were incorporated into combined and comparative analyses with molecular sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA, using branch-weighted matrix representation. The combined analysis strongly suggested independent derivation of the novel fruit type in the two sections from different acornlike ancestors, while the comparative analysis indicated frequent decoupling between the molecular and morphological changes as inferred at well-supported nodes. The acorn fruit type has undergone little modification between ingroup and outgroup, despite large molecular distance. Greater morphological than molecular change was inferred at critical transitions between acorn and novel fruit types, particularly for section Lithocarpus. The combination of these two different types of data improved our understanding of the macroevolution of fruit type in this difficult group, and the comparative analysis highlighted the significant incongruities in evolutionary pattern between the two datasets.
    Matched MeSH terms: Phylogeny*
  5. Choy MK, Phipps ME
    J. Mol. Evol., 2003 Jul;57(1):38-43.
    PMID: 12962304
    Phylogenetic relationships among 23 nonhuman primate (NHP) major histocompatibility complex class I chain-related gene (MIC) sequences, 54 confirmed human MICA alleles, and 16 human MICE alleles were constructed with methods of sequence analysis. Topology of the phylogenetic tree showed separation between NHP MICs and human MICs. For human MICs, the topology indicated monophyly for the MICB alleles, while MICA alleles were separated into two lineages, LI and LII. Of these, LI MICA alleles shared a common ancestry with gorilla (Ggo) MIC. One conservative amino acid difference and two nonconservative amino acid differences in the alpha3 domain were found between the MICA lineages. The nonconservative amino acid differences might imply structural and functional differences. Transmembrane (TM) trinucleotide-repeat variants were found to be specific to the MICA lineages such as A4, A9, and A10 to LI and A5 to LII. Variants such as A5.1 and A6 were commonly found in both MICA lineages. Based on these analyses, we postulate a polyphyletic origin for MICA alleles and their division into two lineages, LI and LII. As such, there would be 30 alleles in LI and 24 alleles in LII, thereby reducing the current level of polymorphism that exists, based on a presumed monophyletic origin. The lower degree of polymorphism in MICA would then be in line with the rest of the human major histocompatibility complex nonclassical class I genes.
    Matched MeSH terms: Phylogeny*
  6. Rosenblum LL, Supriatna J, Melnick DJ
    Am. J. Phys. Anthropol., 1997 Sep;104(1):35-45.
    PMID: 9331452
    Mitochondrial DNA variation was surveyed in nine populations of the pigtail macaque (Macaca nemestrina), covering all three recognized subspecies in Southeast Asia. To do this, a 2,300 base pair fragment spanning the mitochondrial NAD 3 and NAD 4 genes and flanking tRNA subunits leucine and glycine was targeted for amplification and digested with a battery of 16 restriction endonucleases. Out of a total of 107 individuals, 32 unique haplotypes could be distinguished. Parsimony and neighbor-joining analyses grouped the haplotypes into five strongly supported assemblages representing China/Thailand, Malaysia, Sumatra, Borneo, and Siberut. These results indicate that the mainland and island mtDNA haplotypes are strictly and uniquely limited to the geographic ranges of the recognized morphological subspecies. Cladistic and neighbor-joining analyses indicate that inferred phylogenies of mtDNA haplotypes are congruent with subspecies designations. Furthermore, in support of morphological studies, results indicate that the Mentawai macaque is most likely not a distinct species but a subspecies of M. nemestrina.
    Matched MeSH terms: Phylogeny*
  7. Xu X, Liu F, Cheng RC, Chen J, Xu X, Zhang Z, et al.
    Proc Biol Sci, 2015 Jun 07;282(1808):20142486.
    PMID: 25948684 DOI: 10.1098/rspb.2014.2486
    Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.
    Matched MeSH terms: Phylogeny*
  8. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM
    Gigascience, 2018 03 01;7(3):1-6.
    PMID: 29342277 DOI: 10.1093/gigascience/gix137
    Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.

    Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches.

    Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.

    Matched MeSH terms: Phylogeny*
  9. Heckenhauer J, Abu Salim K, Chase MW, Dexter KG, Pennington RT, Tan S, et al.
    PLoS One, 2017;12(10):e0185861.
    PMID: 29049301 DOI: 10.1371/journal.pone.0185861
    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses.
    Matched MeSH terms: Phylogeny*
  10. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Phylogeny*
  11. Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW
    Acta Trop, 2019 May;193:1-6.
    PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017
    A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
    Matched MeSH terms: Phylogeny*
  12. Tan SG, Omar MY, Mahani KW, Rahani M, Selvaraj OS
    Biochem Genet, 1994 Dec;32(11-12):415-22.
    PMID: 7748158
    Nine populations of three species of Nephotettix (Insecta: Hemiptera) from Peninsular Malaysia were analysed for nine enzymes comprising 11 loci. Nei's (Genetics 89, 583, 1978) genetic distance, D, between N. virescens and N. malayanus was 0.181, that between N. virescens and N. nigropictus was 0.283, and that between N. malayanus and N. nigropictus was 0.203. The genetic distance between N. nigropictus from rice plant and from the weed-grass L. hexandra at Universiti Pertanian Malaysia was 0.004 and their genetic identity was 0.996, thus indicating that this insect species fees on both host plants. The proportion of polymorphic loci and the observed heterozygosities were higher in N. nigropictus, with a wider range of host plants, than in N. virescens and N. malayanus, restricted to rice and L. hexandra, respectively.
    Matched MeSH terms: Phylogeny*
  13. Aupalee K, Saeung A, Srisuka W, Fukuda M, Junkum A, Pitasawat B, et al.
    Acta Trop, 2020 Nov;211:105625.
    PMID: 32649996 DOI: 10.1016/j.actatropica.2020.105625
    Three new species of black flies from Thailand, Simulium wangkwaiense, S. tadtonense and S. maeklongkeense, are described based on their adults, pupal exuviae and cocoons. All three new species are assigned to the Simulium (Simulium) striatum species-group, bringing its total number in Thailand to seven. Simulium wangkwaiense sp. nov. is the species formerly called S. quinquestriatum in Thailand. Certain male and pupal morphological characteristics are shown to separate all seven Thai species of this species-group. All of the three new species have been analyzed genetically for their phylogenetic relationships, with three known related species (except for S. thailandicum), by using the fast-evolving nuclear big zinc finger (BZF) gene.
    Matched MeSH terms: Phylogeny*
  14. Srisuka W, Aupalee K, Low VL, Yácob Z, Fukuda M, Saeung A, et al.
    Acta Trop, 2021 Jun;218:105889.
    PMID: 33722581 DOI: 10.1016/j.actatropica.2021.105889
    A new black fly species, Simulium (Gomphostilbia) kiewlomense, is described from females, males, pupae and mature larvae in Thailand. This new species is placed in the S. asakoae species-group and is characterized by having a combination of the elongate female sensory vesicle, widened male hind basitarsus, which is much wider than the hind femur, small pupal terminal hooks, and light greenish larval abdominal segments 1-3. Taxonomic notes are given to separate this new species from other related species. A DNA analysis using the COI gene shows that this new species has two genoforms with 1.21% difference. This is the 28th species of the S. asakoae species-group in Thailand, strengthening the evidence for high species diversity of this species-group.
    Matched MeSH terms: Phylogeny*
  15. Grismer LL, Wood PL, Syafiq MF, Badli-Sham BH, Rizal SA, Ahmad AB, et al.
    Zootaxa, 2016 Aug 02;4147(1):59-66.
    PMID: 27515603 DOI: 10.11646/zootaxa.4147.1.3
    An integrative taxonomic analysis based on additional specimens and color photographs of Lipinia sekayuensis and additional color photographs of L. surda from Pulau Tioman and the Gunung Panti Forest Reserve, Peninsular Malaysia confirm the previous hypotheses that L. sekayuensis is a valid species and is the sister species of L. surda. The two species share a 12.8% sequence divergence between them.
    Matched MeSH terms: Phylogeny*
  16. Chan KO, Grismer LL, Brown RM
    Mol Phylogenet Evol, 2018 10;127:1010-1019.
    PMID: 30030179 DOI: 10.1016/j.ympev.2018.07.005
    The family Rhacophoridae is one of the most diverse amphibian families in Asia, for which taxonomic understanding is rapidly-expanding, with new species being described steadily, and at increasingly finer genetic resolution. Distance-based methods frequently have been used to justify or at least to bolster the recognition of new species, particularly in complexes of "cryptic" species where obvious morphological differentiation does not accompany speciation. However, there is no universally-accepted threshold to distinguish intra- from interspecific genetic divergence. Moreover, indiscriminant use of divergence thresholds to delimit species can result in over- or underestimation of species diversity. To explore the range of variation in application of divergence scales, and to provide a family-wide assessment of species-level diversity in Old-World treefrogs (family Rhacophoridae), we assembled the most comprehensive multi-locus phylogeny to date, including all 18 genera and approximately 247 described species (∼60% coverage). We then used the Automatic Barcode Gap Discovery (ABGD) method to obtain different species-delimitation schemes over a range of prior intraspecific divergence limits to assess the consistency of divergence thresholds used to demarcate current species boundaries. The species-rich phylogeny was able to identify a number of taxonomic errors, namely the incorrect generic placement of Chiromantis inexpectatus, which we now move to the genus Feihyla, and the specific identity of Rhacophorus bipunctatus from Peninsular Malaysia, which we tentatively reassign to R. rhodopus. The ABGD analysis demonstrated overlap between intra- and interspecific divergence limits: genetic thresholds used in some studies to synonymize taxa have frequently been used in other studies to justify the recognition of new species. This analysis also highlighted numerous groups that could potentially be split or lumped, which we earmark for future examination. Our large-scale and en bloc approach to species-level phylogenetic systematics contributes to the resolution of taxonomic uncertainties, reveals possible new species, and identifies numerous groups that require critical examination. Overall, we demonstrate that the taxonomy and evolutionary history of Old-World tree frogs are far from resolved, stable or adequately characterized at the level of genus, species, and/or population.
    Matched MeSH terms: Phylogeny*
  17. Arai T, Taha H, Amalina R, Iizuka Y, Chang CW
    J Fish Biol, 2019 Dec;95(6):1506-1511.
    PMID: 31606890 DOI: 10.1111/jfb.14154
    Tenualosa ilisha was found recently in the Perak River in western Peninsular Malaysia. Molecular phylogenetic and haplotype network analyses suggest that T. ilisha has two genetically distinct populations/groups: (i) Peninsular Malaysia (Malaysia population), and (ii) Peninsular Malaysia, Thailand, India and Bangladesh (Indian Ocean population). The results also suggest that the T ilisha population in Peninsular Malaysia is genetically heterogeneous with a typical anadromous migration pattern.
    Matched MeSH terms: Phylogeny*
  18. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
    Matched MeSH terms: Phylogeny*
  19. Murphy B, Forest F, Barraclough T, Rosindell J, Bellot S, Cowan R, et al.
    Mol Phylogenet Evol, 2020 03;144:106668.
    PMID: 31682924 DOI: 10.1016/j.ympev.2019.106668
    Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.
    Matched MeSH terms: Phylogeny*
  20. Roth S, Balvín O, Siva-Jothy MT, Di Iorio O, Benda P, Calva O, et al.
    Curr Biol, 2019 06 03;29(11):1847-1853.e4.
    PMID: 31104934 DOI: 10.1016/j.cub.2019.04.048
    All 100+ bedbug species (Cimicidae) are obligate blood-sucking parasites [1, 2]. In general, blood sucking (hematophagy) is thought to have evolved in generalist feeders adventitiously taking blood meals [3, 4], but those cimicid taxa currently considered ancestral are putative host specialists [1, 5]. Bats are believed to be the ancestral hosts of cimicids [1], but a cimicid fossil [6] predates the oldest known bat fossil [7] by >30 million years (Ma). The bedbugs that parasitize humans [1, 8] are host generalists, so their evolution from specialist ancestors is incompatible with the "resource efficiency" hypothesis and only partially consistent with the "oscillation" hypothesis [9-16]. Because quantifying host shift frequencies of hematophagous specialists and generalists may help to predict host associations when vertebrate ranges expand by climate change [17], livestock, and pet trade in general and because of the previously proposed role of human pre-history in parasite speciation [18-20], we constructed a fossil-dated, molecular phylogeny of the Cimicidae. This phylogeny places ancestral Cimicidae to 115 mya as hematophagous specialists with lineages that later frequently populated bat and bird lineages. We also found that the clades, including the two major current urban pests, Cimex lectularius and C. hemipterus, separated 47 mya, rejecting the notion that the evolutionary trajectories of Homo caused their divergence [18-21]. VIDEO ABSTRACT.
    Matched MeSH terms: Phylogeny*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links