Displaying publications 141 - 160 of 176 in total

Abstract:
Sort:
  1. Pham TV, Nguyen TT, Nguyen DT, Thuan TV, Bui PQT, Viet VND, et al.
    J Nanosci Nanotechnol, 2019 02 01;19(2):1122-1125.
    PMID: 30360214 DOI: 10.1166/jnn.2019.15926
    Recently, the graphite based materials have gained interest as excellent platforms to remove aqueous pollutants via adsorption routes. This is given that such materials possess large specific surface area and low density. In the present work, a comparative study of two facile and effective approaches is conventional thermal heating and microwave irradiation methods to fabricate expanded graphite from available flake graphite sources of Vietnam for oil-contaminated water purification. The as-prepared expanded graphite was characterized by using FT-IR, SEM, XRD and BET analysis. The results exhibited that expanded graphite has multilevel pore structures and the surface area of expanded graphite obtained from microwave irradiation and conventional heating was 147.5 (m²/g) and 100.97 (m²/g) under optimal processing conditions. The as-synthesized expanded graphite from the microwave irradiation method was found to have higher adsorption capacities for diesel oil, crude oil, and fuel oil compared to conventional heating method.
    Matched MeSH terms: Water Pollution
  2. Abunama T, Othman F, Ansari M, El-Shafie A
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3368-3381.
    PMID: 30511225 DOI: 10.1007/s11356-018-3749-5
    Leachate is one of the main surface water pollution sources in Selangor State (SS), Malaysia. The prediction of leachate amounts is elementary in sustainable waste management and leachate treatment processes, before discharging to surrounding environment. In developing countries, the accurate evaluation of leachate generation rates has often considered a challenge due to the lack of reliable data and high measurement costs. Leachate generation is related to several factors, including meteorological data, waste generation rates, and landfill design conditions. The high variations in these factors lead to complicating leachate modeling processes. This study aims at identifying the key elements contributing to leachate production and developing various AI-based models to predict leachate generation rates. These models included Artificial Neural Network (ANN)-Multi-linear perceptron (MLP) with single and double hidden layers, and support vector machine (SVM) regression time series algorithms. Various performance measures were applied to evaluate the developed model's accuracy. In this study, input optimization process showed that three inputs were acceptable for modeling the leachate generation rates, namely dumped waste quantity, rainfall level, and emanated gases. The initial performance analysis showed that ANN-MLP2 model-which applies two hidden layers-achieved the best performance, then followed by ANN-MLP1 model-which applies one hidden layer and three inputs-while SVM model gave the lowest performance. Ranges and frequency of relative error (RE%) also demonstrate that ANN-MLP models outperformed SVM models. Furthermore, low and peak flow criterion (LFC and PFC) assessment of leachate inflow values in ANN-MLP model with two hidden layers made more accurate values than other models. Since minimizing data collection and processing efforts as well as minimizing modeling complexity are critical in the hydrological modeling process, the applied input optimization process and the developed models in this study were able to provide a good performance in the modeling of leachate generation efficiently.
    Matched MeSH terms: Water Pollution, Chemical/analysis; Water Pollution, Chemical/prevention & control
  3. Khanday WA, Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH
    Bioresour Technol, 2019 May;280:255-259.
    PMID: 30772638 DOI: 10.1016/j.biortech.2019.02.003
    Cephalexin (CFX) antibiotic, a potent pharmaceutical water pollutant, was efficiently removed by activated carbon (AC) derived from a single-step pyrolysis of phosphoric acid-activated chitin. Experimental conditions such as temperature, CFX initial concentration, and solution pH were screened in batch adsorption. Phosphoric acid activation of chitin and subsequent pyrolysis tailored the Brunauer-Emmett-Teller surface area, total pore volume, and average pore diameter to 1199.02 m2/g, 0.641 cm3/g, and 21.37 Å, respectively. The Langmuir isotherm adequately described the equilibrium data for CFX adsorption on chitin-AC, with an R2 of 0.99 and a monolayer capacity of 245.19 mg/g at 50 °C. Chitin-AC showed higher adsorption capacity compared with other ACs derived from industrial and agricultural precursors. When activated by phosphoric acid, chitin-AC featured functional multi-sites for vast antibiotic adsorption treatment. Overall, chitin-AC could be a promising adsorbent for removal of CFX.
    Matched MeSH terms: Water Pollution
  4. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Water Pollution/prevention & control*
  5. Sehreen F, Masud MM, Akhtar R, Masum MRA
    Environ Monit Assess, 2019 Jun 22;191(7):457.
    PMID: 31230139 DOI: 10.1007/s10661-019-7595-9
    The city of Dhaka has been ranked repeatedly as the most polluted, the most populous, and the most unbearable city in the world. More than 19.5 million inhabitants live in Dhaka, and the population growth rate of urban areas in Bangladesh is almost double that of rural areas. Rapid urbanization is one of the leading contributors to water pollution in Dhaka and could prevent the country from achieving sustainable development. Therefore, this study estimates respondents' willingness to pay (WTP) to improve water pollution management systems and identifies factors that influence WTP in Dhaka. This study employed the contingent valuation method (CVM) to estimate WTP of the respondents. Data were collected using a structured questionnaire with CVM questions, which was distributed to households in the study areas. The results revealed that 67% of the respondents are willing to pay for an improved water pollution management system, while 31.8% of households are unwilling to pay. The study also found that socio-economic factors (e.g., income and education) and perception significantly influence WTP. Therefore, this paper will provide directives for policymakers in developing an effective policy framework, as well as sensitize all stakeholders to the management of water pollution in Dhaka. The study suggests that social institutions, financial institutions, banks, non-government organizations (NGOs), insurance companies, and the government could provide effective outreach programs for water pollution management as part of their social responsibility.
    Matched MeSH terms: Water Pollution/analysis*
  6. Salman M, Jahan S, Kanwal S, Mansoor F
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21065-21084.
    PMID: 31124071 DOI: 10.1007/s11356-019-05428-z
    The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.
    Matched MeSH terms: Water Pollution
  7. Praveena SM, Mohd Rashid MZ, Mohd Nasir FA, Sze Yee W, Aris AZ
    Ecotoxicol Environ Saf, 2019 Sep 30;180:549-556.
    PMID: 31128553 DOI: 10.1016/j.ecoenv.2019.05.051
    Occurrence of pharmaceutical residues in drinking water has been widely reported in countries that have registered steady economic growth. This can exert concerns among the general consumers, prompting them to explore the potential human health risks associated with continuous exposure to pharmaceuticals. However, such an occurrence is rarely reported in developing or under-developed countries. To give more contexts, this study looked at the presence of nine pharmaceutical residues in drinking water (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) at Putrajaya residential area in Malaysia. Additionally, the potential health risks associated with contaminated drinking water were investigated. This study has found the presence of pharmaceutical residue concentrations up to 0.38 ng/L, with the highest concentration of caffeine (0.38 ng/L) and the lowest concentration of diclofenac (0.14 ng/L). In comparison, all the nine pharmaceutical residues were substantially lower than previously reported studies. In general, Hazard Quotient (HQ) values indicated that low potential health hazards were present for all age groups. Nevertheless, quantitative occurrences of pharmaceutical residues in drinking water will help guide future toxicological studies to examine other chronic effects, while canvassing for proper framework to look into the water risk management and regulation in Malaysia.
    Matched MeSH terms: Water Pollution
  8. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al.
    Ecotoxicol Environ Saf, 2019 Oct 30;182:109362.
    PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
    Matched MeSH terms: Water Pollution
  9. Mohd Zaideen IM
    Mar Pollut Bull, 2019 Nov;148:3-4.
    PMID: 31422300 DOI: 10.1016/j.marpolbul.2019.07.041
    The strategic location of Malaysia along the world's busiest trade waterways underscores the need to cope ballast water issues for both domestic and international shipping. The adoption of Ballast Water Management Convention 2004 (BWMC) by the International Maritime Organization is suitable for management plans intended to prevent the introduction of invasive species through ballast water discharge. Malaysia has ratified the BWMC in September 2010 and the Convention has come into force in September 2017. However up to now, the BWMC has not been fully implemented by Malaysia for ships operating in its waters. This paper analyse the headway in implementing the provisions of the BWMC in Malaysia as well as the issues and challenges encountered for the implementation. The paper concludes that Malaysian government should promulgate laws and policies to clearly communicate on ballast water issues to the shipping industry communities.
    Matched MeSH terms: Water Pollution/legislation & jurisprudence; Water Pollution/prevention & control*
  10. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
    Matched MeSH terms: Water Pollution
  11. FARAH EILYANA MOHAMED
    MyJurnal
    Solar photocatalysis is a green technology that takes advantage of sustainable solar energy for enhancing oxidation process of numerous harmful water contaminants. In this study, a custom solar driven zinc oxide (ZnO)-mediated photocatalytic system was developed and its efficiency to remove organic contaminants as well as to disinfect selected bacteria was investigated. Methylene blue (MB) dye was used as the model organic contaminant, while Escherichia coli(E.coli) was used as the model fecal coliform bacteria in contaminated water. A series of photodegradation experiments were conducted on water contaminated with either 10 mg/L of MB or ~1010CFU/ml of E.coli. The experiments were completed under sunlight irradiation in the presence of 1 g/L of nano ZnO photocatalyst for up to 6 hours. Using a solar thermal collector, the photoreactor operated in the temperature range of 25 to 50 oC. The findings revealed that the combination of solar thermal with solar photocatalysis usingZnO intensified the degradation of MB and disinfection of E.coli. 98.08% of MB dye and 99.99% of E.coliwere successfully removed from the water within the first 3 hours of treatment. Almost complete removal was eventually achieved after 6 hours of treatment. It is therefore suggested that ZnO-based solar photocatalytic system developed in this study is highly efficient at enhancing water decontamination process.
    Matched MeSH terms: Water Pollution
  12. Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, et al.
    J Hazard Mater, 2020 02 05;383:121125.
    PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125
    Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
    Matched MeSH terms: Water Pollution
  13. Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN
    Chemosphere, 2020 May;247:125932.
    PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932
    Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
    Matched MeSH terms: Water Pollution
  14. Baby R, Hussein MZ
    Materials (Basel), 2020 Jun 09;13(11).
    PMID: 32526876 DOI: 10.3390/ma13112627
    Heavy metal ion contamination in water poses a significant risk to human health as well as to the environment. Millions of tons of agricultural wastes are produced from oil palm plantations which are challenging to manage. In this study, we converted palm kernel shells (PKS) from a palm oil plantation into activated carbon (AC) having a surface area of 1099 m2/g using phosphoric acid as an activator. The prepared material was characterized using BET, XRD, Raman, FESEM and FTIR analyses. The AC was applied for the treatment of heavy-metal-contaminated water, and different parameters; the pH, adsorbent dosage, contact time and metal ion concentrations were varied to determine the optimal conditions for the metal ion adsorption. Different kinetic models; the zeroth, first-order and second-order, and Freundlich and Langmuir isotherm models were used to determine the mechanism of metal ion adsorption by the AC. Under the optimized conditions, Cr6+ and Pb2+ were removed completely, while Zn2+ and Cd2+ were more than 80% removed. This is a greener approach in which an agricultural waste, PKS is converted into a useful product, activated carbon and subsequently applied for the treatment of heavy metal-contaminated water.
    Matched MeSH terms: Water Pollution
  15. Mustafa S, Bahar A, Aziz ZA, Darwish M
    J Contam Hydrol, 2020 Aug;233:103662.
    PMID: 32569923 DOI: 10.1016/j.jconhyd.2020.103662
    This article provides an analytical solute transport model to investigate the potential of groundwater contamination by polluted surface water in a two dimensional domain. The clogging of streambed which makes the aquifer partially penetrated by the stream, is considered in the model. The impacts of pumping process, hydraulic conductivity and clogging layer on the quality of water produced from nearby drinking water wells are evaluated. It is found that results are consistent with numerical simulation conducted by MODFLOW software. Moreover, the model is applied using data of contamination occurrence in Malaysia, where high contaminants concentrations are found close to streams. Results show that the pumping activities (rate and time period) are crucial factors when evaluating the risk of groundwater contamination from surface water. Additionally, this study illustrates that the increase in either hydraulic conductivity or leakance coefficient parameters due to the clogging layer will enlarge the area of contamination. The model is able to determine the suitable pumping rate and location of the well so that the contamination plume never reaches the extraction well, which is useful in constructing riverbank filtration sites.
    Matched MeSH terms: Water Pollution
  16. Prabakaran K, Eswaramoorthi S, Nagarajan R, Anandkumar A, Franco FM
    Chemosphere, 2020 Aug;252:126430.
    PMID: 32200178 DOI: 10.1016/j.chemosphere.2020.126430
    By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  17. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR
    ACS Omega, 2020 Aug 25;5(33):20684-20697.
    PMID: 32875202 DOI: 10.1021/acsomega.0c01905
    Since the turn of the 21st century, water pollution has been a major issue, and most of the pollution is generated by dyes. Adsorption is one of the most commonly used dye-removal methods from aqueous solution. Magnetic-particle integration in the water-treatment industry is gaining considerable attention because of its outstanding physical and chemical properties. Magnetic-particle adsorption technology shows promising and effective outcomes for wastewater treatment owing to the presence of magnetic material in the adsorbents that can facilitate separation through the application of an external magnetic field. Meanwhile, the introduction of activated carbon (AC) derived from various materials into a magnetic material can lead to efficient organic-dye removal. Therefore, this combination can provide an economical, efficient, and environmentally friendly water-purification process. Although activated carbon from low-cost and abundant materials has considerable potential in the water-treatment industry, the widespread applications of adsorption technology are limited by adsorbent recovery and separation after treatment. This work specifically and comprehensively describes the use of a combination of a magnetic material and an activated carbon material for dye adsorption in wastewater treatment. The literature survey in this mini-review provides evidence of the potential use of these magnetic adsorbents, as well as their magnetic separation and recovery. Future directions and challenges of magnetic activated carbon in wastewater treatment are also discussed in this paper.
    Matched MeSH terms: Water Pollution
  18. Arifin MH, Kayode JS, Ismail KI, Abdullah M, Embrandiri A, Nazer SM, et al.
    Data Brief, 2020 Dec;33:106595.
    PMID: 33318980 DOI: 10.1016/j.dib.2020.106595
    Industrial, and municipal wastes are part of the main sources of environmental hazards as well as groundwater and surface water pollutions. If not well composed, treated, and safely disposed, it could permeate through the subsurface lithologies by reaching down to the underground water aquifers, particularly in zones of unprotected aquifer units. Pollutants, most especially the landfills leachates that encompassed organic contaminants, ammonia, nitrates, total nitrogen, suspended solids, heavy metals and soluble inorganic salts, i.e., soluble nitrogen, sulphur compound, sulphate and chlorides, could posed undesirable environmental impacts due to inappropriate disposals that may give rise to gaseous fumes and leachate formations. An electrical resistivity geophysical technique utilizing the RES2D no-invasive, cost-effective and rapid method of data collection was integrated with the 3D Oasis Montaj software to approximate the volume of the generated rectangular prism model of the contaminants delineated from mixtures of the industrial, and municipal wastes plumes to be 312,000 m 3.
    Matched MeSH terms: Water Pollution
  19. Zahidi I, Wilson G, Brown K, Hou FKK
    J Health Pollut, 2020 Dec;10(28):201207.
    PMID: 33324504 DOI: 10.5696/2156-9614-10.28.201207
    Background: Rivers are susceptible to pollution and water pollution is a growing problem in low- and middle-income countries (LMIC) with rapid development and minimal environmental protections. There are universal pollutant threshold values, but they are not directly linked to river activities such as sand mining and aquaculture. Water quality modelling can support assessments of river pollution and provide information on this important environmental issue.

    Objectives: The objective of the present study was to demonstrate water quality modelling methodology in reviewing existing policies for Malaysian river catchments based on an example case study.

    Methods: The MIKE 11 software developed by the Danish Hydraulic Institute was used to model the main pollutant point sources within the study area - sand mining and aquaculture. Water quality data were obtained for six river stations from 2000 to 2015. All sand mining and aquaculture locations and approximate production capacities were quantified by ground survey. Modelling of the sand washing effluents was undertaken with the advection-dispersion module due to the nature of the fine sediment. Modelling of the fates of aquaculture deposits required both advection-dispersion and Danish Hydraulic Institute ECO Lab modules to simulate the detailed interactions between water quality determinants.

    Results: According to the Malaysian standard, biochemical oxygen command (BOD) and ammonium (NH4) parameters fell under Class IV at most of the river reaches, while the dissolved oxygen (DO) parameter varied between Classes II to IV. Total suspended solids (TSS) fell within Classes IV to V along the mid river reaches of the catchment.

    Discussion: Comparison between corresponding constituents and locations showed that the water quality model reproduced the long-term duration exceedance for the main body of the curves. However, the water quality model underestimated the infrequent high concentration observations. A standard effluent disposal was proposed for the development of legislation and regulations by authorities in the district that could be replicated for other similar catchments.

    Conclusions: Modelling pollutants enables observation of trends over the years and the percentage of time a certain class is exceeded for each individual pollutant. The catchment did not meet Class II requirements and may not be able to reach Class I without extensive improvements in the quality and reducing the quantity of both point and non-point effluent sources within the catchment.

    Competing Interests: The authors declare no competing financial interests.

    Matched MeSH terms: Water Pollution
  20. Lim, Leong Seng, Isabella Ebi, Liew, Kit Shing, Yap, Tzuen Kiat, Tan, Nai Han
    MyJurnal
    Tieshangang Bay in the Beibu Gulf, Guangxi of China, is a strategic location for pearl farming. Although water pollution has been reported in this bay but the general health of the pearl oyster, Pinctada fucata martensii, farmed there has never been assessed. The present study examined the condition of P. fucata martensii farmed in the Tieshangang Bay by analyzing its length-weight relationship (LWR) and relative condition factor (RCF). A total of 111 specimens were sampled for measuring their shell height and total weight for determining the LWR and RCF. The coefficient of correlation of the LWR was high (R2 = 0.93), significant at 0.01 level. Negative allometric growth (b = 2.7048) was observed. However, P. fucata martensii achieved the expected growth in terms of weight, as determined through the RCF (mean 1.13). Negative allometric growth is commonly reported on the wild Pinctada spp. collected from different regions. Apparently, the water pollution in the Tieshangang Bay did not compromise the general health of the pearl oyster cultured there. Nevertheless, further study on the farm’s surrounding water quality and plankton availability is necessary to investigate the interaction between the growth of the oyster and its culture environment. In conclusion, the P. fucata martensii farmed in the Tieshangang Bay was considered healthy and the bay is still suitable for pearl oyster farming.
    Matched MeSH terms: Water Pollution
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links