OBJECTIVE: To pool all published studies that compared the safety and efficacy of autologous CBT derived from different sources and phenotypes with non cell-based therapy (NCT) in CLI patients.
METHODS: We searched Medline, Embase, Cochrane Library and ClinicalTrials.gov from 1974-2017. Sixteen randomised clinical trials (RCTs) involving 775 patients receiving the following interventions: mobilised peripheral blood stem cells(m-PBSC), bone marrow mononuclear cells(BM-MNC), bone marrow mesenchymal stem cells(BM-MSC), cultured BM-MNC(Ixmyelocel-T), cultured PB cells(VesCell) and CD34+ cells were included in the meta-analysis.
RESULTS: High-quality evidence (QoE) showed similar all-cause mortality rates between CBT and NCT. AR reduction by approximately 60% were observed in patients receiving CBT compared to NCT (moderate QoE). CBT patients experienced improvement in ulcer healing, ABI, TcO2, pain free walking capacity and collateral vessel formation (moderate QoE). Low-to-moderate QoE showed that compared to NCT, intramuscular BM-MNC and m-PBSC may reduce amputation rate, rest pain, and improve ulcer healing and ankle-brachial pressure index, while intramuscular BM-MSC appeared to improve rest pain, ulcer healing and pain-free walking distance but not AR. Efficacy of other types of CBT could not be confirmed due to limited data. Cell harvesting and implantation appeared safe and well-tolerated with similar rates of adverse-events between groups.
CONCLUSION: Implantation of autologous CBT may be an effective therapeutic strategy for no-option CLI patients. BM-MNC and m-PSBC appear more effective than NCT in improving AR and other limb perfusion parameters. BM-MSC may be beneficial in improving perfusion parameters but not AR, however, this observation needs to be confirmed in a larger population of patients. Generally, treatment using various sources and phenotypes of cell products appeared safe and well tolerated. Large-size RCTs with long follow-up are warranted to determine the superiority and durability of angiogenic potential of a particular CBT and the optimal treatment regimen for CLI.
METHODS: The TCGA portal was employed in this investigation to find APOC1 expression in CRC. Its correlation with other genes and clinicopathological data was examined using the UALCAN database. To validate APOC1's cellular location, the Human Protein was employed. In order to forecast the relationship between APOC1 expression and prognosis in CRC patients, the Kaplan-Meier plotter database was used. TISIDB was also employed to evaluate the connection between immune responses and APOC1 expression in CRC. The interactions of APOC1 with other proteins were predicted using STRING. In order to understand the factors that contribute to liver metastasis from CRC, single-cell RNA sequencing (scRNA-seq) was done on one patient who had the disease. This procedure included sampling preoperative blood and the main colorectal cancer tissues, surrounding colorectal cancer normal tissues, liver metastatic cancer tissues, and normal liver tissues. Finally, an in vitro knockdown method was used to assess how APOC1 expression in tumor-associated macrophages (TAMs) affected CRC cancer cell growth and migration.
RESULTS: When compared to paracancerous tissues, APOC1 expression was considerably higher in CRC tissues. The clinicopathological stage and the prognosis of CRC patients had a positive correlation with APOC1 upregulation and a negative correlation, respectively. APOC1 proteins are mostly found in cell cytosols where they may interact with APOE, RAB42, and TREM2. APOC1 was also discovered to have a substantial relationship with immunoinhibitors (CD274, IDO1, and IL10) and immunostimulators (PVR, CD86, and ICOS). According to the results of scRNA-seq, we found that TAMs of CRC tissues had considerably more APOC1 than other cell groups. The proliferation and migration of CRC cells were impeded in vitro by APOC1 knockdown in TAMs.
CONCLUSION: Based on scRNA-seq research, the current study shows that APOC1 was overexpressed in TAMs from CRC tissues. By inhibiting APOC1 in TAMs, CRC progression was reduced in vitro, offering a new tactic and giving CRC patients fresh hope.
OBJECTIVES: To assess the effects of cell-based therapy for people with ALS/MND, compared with placebo or no additional treatment.
SEARCH METHODS: On 21 June 2016, we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, and Embase. We also searched two clinical trials' registries for ongoing or unpublished studies.
SELECTION CRITERIA: We planned to include randomised controlled trials (RCTs), quasi-RCTs and cluster RCTs that assigned people with ALS/MND to receive cell-based therapy versus a placebo or no additional treatment. Co-interventions were allowable, provided that they were given to each group equally.
DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology.
MAIN RESULTS: No studies were eligible for inclusion in the review. We identified four ongoing trials.
AUTHORS' CONCLUSIONS: Currently, there is a lack of high-quality evidence to guide practice on the use of cell-based therapy to treat ALS/MND.We need large, prospective RCTs to establish the efficacy of cellular therapy and to determine patient-, disease- and cell treatment-related factors that may influence the outcome of cell-based therapy. The major goals of future research should be to determine the appropriate cell source, phenotype, dose, and route of delivery, as these will be key elements in designing an optimal cell-based therapy programme for people with ALS/MND. Future research should also explore novel treatment strategies, including combinations of cellular therapy and standard or novel neuroprotective agents, to find the best possible approach to prevent or reverse the neurological deficit in ALS/MND, and to prolong survival in this debilitating and fatal condition.
RESULTS: The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process.
CONCLUSION: The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
METHODS: MTT assay was performed to evaluate the cytotoxic effects of both compounds toward the cells after 24, 48 and 72 hours of exposure or treatment. The alkaline comet assay was conducted to determine the DNA damage on K562 cells after been exposed to both compounds for 30, 60 and 90 minutes.
RESULTS: The IC50 values obtained from K562 cells ranged from 0.01 to 0.30 μM, whereas for both Chang liver cell and lung fibroblast V79 cell, the values ranged from 0.10 to 0.40 μM. For genotoxicity evaluation, the percentage of damaged DNA is measured as an average of tail moment, and was found to be within 1.20 to 2.20 A.U while the percentage of DNA intensity ranging from 1.50 to 3.50% indicating no genotoxic effects.
CONCLUSION: Both compounds are cytotoxic toward leukemia cells and non-cancerous cells but do not exert their genotoxic effects towards leukemia cell.
METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.
RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.
CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.