Displaying publications 161 - 180 of 243 in total

Abstract:
Sort:
  1. Chieng S, Mohamed R, Nathan S
    Microb Pathog, 2015 Feb;79:47-56.
    PMID: 25616255 DOI: 10.1016/j.micpath.2015.01.006
    Burkholderia pseudomallei, the causative agent of melioidosis, is able to survive extreme environments and utilizes various virulence factors for survival and pathogenicity. To compete and survive within these different ecological niches, B. pseudomallei has evolved specialized pathways, including the Type VI secretion systems (T6SSs), that have a role in pathogenesis as well as interbacterial interactions. We examined the expression profile of B. pseudomallei T6SS six gene clusters during infection of U937 macrophage cells. T6SS-5 was robustly transcribed while the other five clusters were not significantly regulated proposing the utility of T6SS-5 as a potential biomarker of exposure to B. pseudomallei. Transcription of T6SS regulators VirAG and BprB was also not significant during infection when compared to bacteria grown in culture. Guided by these findings, three highly expressed T6SS genes, tssJ-4, hcp1 and tssE-5, were expressed as recombinant proteins and screened against melioidosis patient sera by western analysis and ELISA. Only Hcp1 was reactive by both types of analysis. The recombinant Hcp1 protein was further evaluated against a cohort of melioidosis patients (n = 32) and non-melioidosis individuals (n = 20) sera and the data clearly indicates a higher sensitivity (93.7%) and specificity (100%) for Hcp1 compared to bacterial lysate. The detection of anti-Hcp1 antibodies in patients' sera indicating the presence of B. pseudomallei highlights the potential of Hcp1 to be further developed as a serodiagnostic marker for melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics*; Burkholderia pseudomallei/growth & development
  2. Chin CY, Tan SC, Nathan S
    PMID: 22919676 DOI: 10.3389/fcimb.2012.00085
    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG(1), proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/genetics; Burkholderia pseudomallei/immunology
  3. Chan SW, Ong GI, Nathan S
    J. Biochem. Mol. Biol., 2004 Sep 30;37(5):556-64.
    PMID: 15479619
    A recombinant Fab monoclonal antibody (Fab) C37, previously obtained by phage display and biopanning of a random antibody fragment library against Burkholderia pseudomallei protease, was expressed in different strains of Escherichia coli. E. coli strain HB2151 was deemed a more suitable host for Fab expression than other E. coli strains when grown in media supplemented with 0.2 % glycerol. The expressed Fab fragment was purified by affinity chromatography on a Protein G-Sepharose column, and the specificity of the recombinant Fab C37 towards B. pseudomallei protease was proven by Western blotting, enzyme-linked immunosorbent assay (ELISA) and by proteolytic activity neutralization. In addition, polyclonal antibodies against B. pseudomallei protease were produced in rabbits immunized with the protease. These were isolated from high titer serum by affinity chromatography on recombinant-Protein A-Sepharose. Purified polyclonal antibody specificity towards B. pseudomallei protease was proven by Western blotting and ELISA.
    Matched MeSH terms: Burkholderia pseudomallei/enzymology; Burkholderia pseudomallei/immunology*
  4. Nathan S, Li H, Mohamed R, Embi N
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):45-53.
    PMID: 12186782
    We have used the phagemid pComb3H to construct recombinant phages displaying the single chain variable fragment (ScFv) towards exotoxin of Burkholderia pseudomallei. Variable heavy and light chain fragments were amplified from the hybridoma 6E6A8F3B line, with a wide spectrum of primers specific to mouse antibody genes. Through overlapping extension polymerase chain reaction, the heavy and light chain fragments were linked to form the ScFv which was subsequently cloned into the phage display vector and transformed into ER2537 cells to yield a complexity of 10(8) clones. The transformants were screened by four rounds of biopanning against the exotoxin and resulted in selective enrichment of exotoxin-binding antibodies by 301 fold. The phage pool from the final round of selection displayed antibodies of high-affinity to the exotoxin as demonstrated by ELISA. Several clones were selected randomly from this pool and analysed by restriction enzyme digestion, fingerprinting and sequencing. Restriction analysis confirmed that all clones carried a 700-800 bp insert whose sequences, in general, corresponded to that of mouse IgG. Fingerprinting profiles delineated the antibodies into two families with different CDR sequences.
    Matched MeSH terms: Burkholderia pseudomallei/immunology*; Burkholderia pseudomallei/pathogenicity
  5. Liew FY, Tay ST, Puthucheary SD
    Trop Biomed, 2011 Dec;28(3):646-50.
    PMID: 22433895 MyJurnal
    Ciprofloxacin, a quinolone with good intracellular penetration may possibly be used for treatment of melioidosis caused by Burkholderia pseudomallei, but problems with resistance may be encountered. Amino acid substitutions in gyrA/gyrB have given rise to fluoroquinolone resistance in various microorganisms. Using published primers for gyrA and gyrB, PCR was performed on 11 isolates of B. pseudomallei with varying degrees of sensitivity to ciprofloxacin, followed by DNA sequencing to detect possible mutations. Results showed an absence of any point mutation in either gene. Local isolates have yet to develop full resistance to ciprofloxacin and probably other mechanisms of resistance may have been involved in the decreased sensitivity to ciprofloxacin.
    Matched MeSH terms: Burkholderia pseudomallei/drug effects*; Burkholderia pseudomallei/isolation & purification
  6. Shrestha N, Adhikari M, Pant V, Baral S, Shrestha A, Basnyat B, et al.
    BMC Infect Dis, 2019 Feb 19;19(1):176.
    PMID: 30782129 DOI: 10.1186/s12879-019-3793-x
    BACKGROUND: Melioidosis is a life-threatening infectious disease that is caused by gram negative bacteria Burkholderia pseudomallei. This bacteria occurs as an environmental saprophyte typically in endemic regions of south-east Asia and northern Australia. Therefore, patients with melioidosis are at high risk of being misdiagnosed and/or under-diagnosed in South Asia.

    CASE PRESENTATION: Here, we report two cases of melioidosis from Nepal. Both of them were diabetic male who presented themselves with fever, multiple abscesses and developed sepsis. They were treated with multiple antimicrobial agents including antitubercular drugs before being correctly diagnosed as melioidosis. Consistent with this, both patients were farmer by occupation and also reported travelling to Malaysia in the past. The diagnosis was made consequent to the isolation of B. pseudomallei from pus samples. Accordingly, they were managed with intravenous meropenem followed by oral doxycycline and cotrimoxazole.

    CONCLUSION: The case reports raise serious concern over the existing unawareness of melioidosis in Nepal. Both of the cases were left undiagnosed for a long time. Therefore, clinicians need to keep a high index of suspicion while encountering similar cases. Especially diabetic-farmers who present with fever and sepsis and do not respond to antibiotics easily may turn out to be yet another case of melioidosis. Ascertaining the travel history and occupational history is of utmost significance. In addition, the microbiologist should be trained to correctly identify B. pseudomallei as it is often confused for other Burkholderia species. The organism responds only to specific antibiotics; therefore, correct and timely diagnosis becomes crucial for better outcomes.

    Matched MeSH terms: Burkholderia pseudomallei/isolation & purification*; Burkholderia pseudomallei/pathogenicity
  7. Sam IC, See KH, Puthucheary SD
    J Clin Microbiol, 2009 May;47(5):1556-8.
    PMID: 19297597 DOI: 10.1128/JCM.01657-08
    A patient with a clonal infection of Burkholderia pseudomallei had subpopulations with ceftazidime and amoxicillin-clavulanate susceptibilities that differed among the clinical specimens. Resistance was associated with a novel Cys69Tyr substitution in the Ambler class A beta-lactamase. Susceptibility testing of multiple colony variants from different sites should be performed for patients with culture-confirmed melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/drug effects*; Burkholderia pseudomallei/isolation & purification
  8. Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Microbiol, 2015;15:270.
    PMID: 26597807 DOI: 10.1186/s12866-015-0604-4
    There are still numerous protein subfamilies within families and superfamilies that do not yet have conclusive empirical experimental evidence providing a specific function. These proteins persist in databases with the annotation of a specific 'putative' function made by association with discernible features in the protein sequence.
    Matched MeSH terms: Burkholderia pseudomallei/genetics; Burkholderia pseudomallei/metabolism*
  9. Hii SYF, Ali NA, Ahmad N, Amran F
    J Med Microbiol, 2017 Nov;66(11):1623-1627.
    PMID: 29048275 DOI: 10.1099/jmm.0.000611
    Melioidosis is an endemic infectious disease in Southeast Asia and northern Australia, caused by Burkholderia pseudomallei. However, the incidence rate in Malaysia is not well documented. The high mortality rate and broad range of clinical presentations require rapid and accurate diagnosis for appropriate treatment. This study compared the efficacy of in-house IgM and IgG ELISA methods using a local B. pseudomallei strain. The diagnostic accuracy of the in-house IgG ELISA was better than that of the IgM ELISA: sensitivity (IgG: 84.71 %, IgM: 76.14 %) and specificity (IgG: 93.64 %, IgM: 90.17 %); positive predictive value (IgG: 86.75 %, IgM: 79.76 %) and negative predictive value (IgG: 92.57 %, IgM: 89.66 %); likelihood ratio (LR) [IgG: 13.32, IgM: 7.75 (LR+); IgG: 0.16, IgM: 0.26 (LR-)], and was supported by the observation of the absorbance value in comparisons between culture and serology sampling. In-house IgG ELISA was shown to be useful as an early diagnostic tool for melioidosis.
    Matched MeSH terms: Burkholderia pseudomallei/immunology; Burkholderia pseudomallei/isolation & purification
  10. Soo CI, Abdul Wahab S, Abdul Hamid F
    Respir Med Case Rep, 2015;16:54-6.
    PMID: 26744655 DOI: 10.1016/j.rmcr.2015.07.005
    Melioidosis is a serious infection, which can involve multiple systems. We report a case of pulmonary melioidosis with the initial presentation mimicking a partially treated pneumonia complicated by right-sided pleural effusion. The patient is a 49-year old man who did not respond to parenteral ceftriaxone and tazobactam/piperacillin therapy. However, upon culture and sensitivity results from blood and pleural samples isolated Burkholderia pseudomallei; antimicrobial therapy was de-escalated to parenteral ceftazidime. Within 72 h duration, his fever subsided and other respiratory symptoms improved tremendously. This case highlights the importance of early recognition of B. pseudomallei in pulmonary infection in order for prompt institution of appropriate antibiotics treatment; thus reducing morbidity and mortality.
    Matched MeSH terms: Burkholderia pseudomallei
  11. Ding CH, Hussin S, Tzar MN, Rahman MM, Ramli SR
    Pak J Med Sci, 2013 Apr;29(2):666-8.
    PMID: 24353601
    Burkholderia pseudomallei is an free-living gram-negative bacterium causing melioidosis and is endemic in Southeast Asia. A 56-year-old diabetic construction worker with a 1-month history of abdominal pain and 1-day history of high-grade fever was found to have a left non-dissecting infrarenal mycotic aortic aneurysm by abdominal computerized tomography scan. Bacteriological examination of his blood yielded Burkholderia pseudomallei. The patient was treated with right axillo-bifemoral bypass with excision of aneurysm and high-dose intravenous ceftazidime for two weeks, followed by oral trimethoprim/sulfamethoxazole and oral doxycycline for a minimum of five months.
    Matched MeSH terms: Burkholderia pseudomallei
  12. How KY, Hong KW, Chan KG
    PeerJ, 2015;3:e1117.
    PMID: 26290785 DOI: 10.7717/peerj.1117
    Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
    Matched MeSH terms: Burkholderia
  13. Embi N, Devarajoo D, Mohamed R, Ismail G
    World J Microbiol Biotechnol, 1993 Jan;9(1):91-6.
    PMID: 24419848 DOI: 10.1007/BF00656525
    The optimization and development of an ELISA-disc procedure for the detection of antibodies to whole cell surface antigens and purified exotoxin ofPseudomonas pseudomallei is described. Comparison of the serum agglutination test (SAT), the serum based enzyme-linked immunosorbent assay (ELISA) and the ELISA-disc procedures used on goat and human sera demonstrated a high correlation in their ability to detect antibodies specific forP. pseudomallei antigens. A serological survey using the ELISA-disc method was carried out on a normal human population in Sabah, Malaysia, an area known to be endemic for melioidosis. The prevalances of antibodies towards cell surface antigens and exotoxin ofP. pseudomallei were 28% and 8%, respectively. As a procedure, the ELISA-disc technique reported here is technically simple and provides savings in costs and is thus deemed suitable for seroepidemiological surveillance of melioidosis in remote areas of South-East Asia.
    Matched MeSH terms: Burkholderia pseudomallei
  14. Yip CH, Ghazali AK, Nathan S
    Biochem Soc Trans, 2020 04 29;48(2):569-579.
    PMID: 32167134 DOI: 10.1042/BST20190836
    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease of the tropics with high clinical mortality rates. To date, no vaccines are approved for melioidosis and current treatment relies on antibiotics. Conversely, common misdiagnosis and high pathogenicity of Bp hamper efforts to fight melioidosis. This bacterium can be isolated from a wide range of niches such as waterlogged fields, stagnant water bodies, salt water bodies and from human and animal clinical specimens. Although extensive studies have been undertaken to elucidate pathogenesis mechanisms of Bp, little is known about how a harmless soil bacterium adapts to different environmental conditions, in particular, the shift to a human host to become a highly virulent pathogen. The bacterium has a large genome encoding an armory of factors that assist the pathogen in surviving under stressful conditions and assuming its role as a deadly intracellular pathogen. This review presents an overview of what is currently known about how the pathogen adapts to different environments. With in-depth understanding of Bp adaptation and survival, more effective therapies for melioidosis can be developed by targeting related genes or proteins that play a major role in the bacteria's survival.
    Matched MeSH terms: Burkholderia pseudomallei
  15. Zainal Abidin H, Muhd Besari A, Nadarajan C, Wan Shukeri WF, Mazlan MZ, Chong SE, et al.
    IDCases, 2017;8:63-65.
    PMID: 28417070 DOI: 10.1016/j.idcr.2017.03.010
    In Malaysia, melioidosis is commonly encountered as this infection is known as part of the endemic area for the disease. Managing cases of positive Burkholderia pseudomallei infection can involve multidisciplinary unit mainly, microbiologist, infectious disease team and intensive care as it may be quite difficult to distinguish melioidosis from a number of other diseases on the clinical setting alone. Laboratory diagnosis plays a vital role in determining the direction of management. Investigations such as culture, polymerase chain reaction (PCR) and serology should be evaluated once the disease is suspected. In this particular case, the patient is a young adult involved in a road traffic accident. Unlike any other cases with melioidosis, he had no potential risk factors which may have contributed to the severity of the disease and it is likely that the site of the accident was the source of acquisition of this gram negative bacterium.
    Matched MeSH terms: Burkholderia pseudomallei
  16. Lim MP, Firdaus-Raih M, Nathan S
    Front Microbiol, 2016;7:1436.
    PMID: 27672387 DOI: 10.3389/fmicb.2016.01436
    Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs) have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi)-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.
    Matched MeSH terms: Burkholderia pseudomallei
  17. Nur Rashyeda Ramli, Maizatul Suriza Mohamed, Idris Abu Seman, Madihah Ahmad Zairun, Nasyaruddin Mohamad
    Sains Malaysiana, 2016;45:401-409.
    This study was conducted to screen the endophytic bacteria as a biological control agent (BCA) against Ganoderma boninense. A total of 581 endophytic bacteria were successfully isolated from symptomless oil palm root tissues at Teluk Intan, Perak, Malaysia. Three endophytic bacteria, Pseudomonas aeruginosa GanoEB1, Burkholderia cepacia GanoEB2, and Pseudomonas syringae GanoEB3 were found to have a potential as BCA based on their percentage inhibition of radial growth (PIRG) in dual culture and culture filtrate tests. Two nursery trials were conducted to evaluate the capability of these bacteria to suppress Ganoderma disease in oil palm seedlings that were artificially infected with G. boninense using rubber wood block (RWB) sitting technique. The percentage of disease incidence (DI), severity of foliar symptoms (SFS) and dead seedlings were used as the assessment tools. As a result, DI and SFS have developed much slower in the seedlings that were pre-treated with bacteria compared to untreated seedlings. After 6 months of inoculation, Ganoderma disease incidence was reduced from 62-75% in the seedlings treated with P. aeruginosa GanoEB1, followed by B. cepacia GanoEB2 (31-59%) and P. syringae GanoEB3 (30-31%). Among these three endophytic bacteria, P. aeruginosa GanoEB1 was the most effective in controlling Ganoderma disease and the dead seedlings were in the range of 13.3-26.7%, followed by B. cepacia GanoEB2 (33.3% for both trials) and P. syringae GanoEB3 (33.3-40.0%) compared to untreated seedlings at 60% for both trials. A field study needs to be conducted to verify their effectiveness in controlling Ganoderma in oil palm.
    Matched MeSH terms: Burkholderia cepacia
  18. Zhu X, Chen H, Li S, Wang LC, Wu DR, Wang XM, et al.
    Front Microbiol, 2020;11:778.
    PMID: 32457710 DOI: 10.3389/fmicb.2020.00778
    Melioidosis is a common infectious disease in Southeast Asia and Northern Australia. In Hainan, several cases have been reported, but no systematic study has yet been done on the molecular epidemiology profiles of the organism. An investigation of the molecular epidemiology links and population structure of Burkholderia pseudomallei would help to better understand the clonally of the isolates and differences among them. In this study, multilocus variable-number tandem repeat analysis (MLVA), and multilocus sequence typing (MLST) were applied to examine the epidemiological relatedness and population structure of 166 B. pseudomallei isolates obtained during 2002-2014 in Hainan, China. Both the MLVA_4 and MLST approaches had high discriminatory power for this population, with diversity indices of 0.9899 and 0.9457, respectively. However, the MLVA_4 assay showed a higher discriminatory power than the MLST approach, and a variable-number tandem repeat (VNTR3 933) found by the MLVA approach was the most useful in discriminating strains from this province. A total of 166 strains yielded 99 MLVA_4 genotypes, of which 34 genotypes were shared by 101 isolates, for a clustering rate of 60.8% (101/166), which suggested that some cases may have a common source. Additionally, 65 isolates showed distinct genotypes, indicating that more than 39.2% (65/166) of melioidosis cases in Hainan had epidemiologically unrelated or sporadic characteristics. The 166 isolates were resolved into 48 STs, of which five STs (ST55, -70, -46, -50, and -58) were here found to be predominant. Phylogenetic analysis of 116 isolates conducted using the eBURST v3 segregated the 48 STs into eight groups with ST50 as predicted founder, and 21 STs were found to be singletons, which suggest that the strains in the Hainan region represent a high diversity of ST clones, indicating that many B. pseudomallei clone groups are endemic to this region. Moreover, ST50 had 5 SLV, 7 DLV, 6 TLV, and 29 satellite STs and formed a radial expansion pattern, suggesting that the melioidosis epidemic in this study was mainly caused by the clonal expansion of ST 50. Phylogenetic analysis on global scale suggests that China's isolates are closely related to isolates from Southeast Asia, particularly from Thailand and Malaysia.
    Matched MeSH terms: Burkholderia pseudomallei
  19. Zulpa AK, Barathan M, Iyadorai T, Chandramathi S, Vellasamy KM, Vadivelu J, et al.
    Trop Biomed, 2021 Jun 01;38(2):180-185.
    PMID: 34172708 DOI: 10.47665/tb.38.2.055
    Acute myeloid leukemia (AML) is a malignant disease progressed from abnormal production of immature myeloid cells, which is often associated with concurrent infections after diagnosis. It was widely established that infections are the major contributors to mortality in this group due to the prevalency of neutropenia. Gram-negative Burkholderia pseudomallei is the causative agent of melioidosis. This disease had been reported in several neutropenic cancer patients undergoing chemotherapy resulting in severe clinical presentations and high mortalities which is in need of critical attention. Studies show that cytokines are important mediators of melioidosis progression and low neutrophil counts are associated with progression of its severity. However, to date, there are no reports on cytokine production in neutropenic cancer patients who are prone to melioidosis. Hence, here we assessed the cytokine production in neutropenic AML patients by introducing B. pseudomallei to their peripheral blood mononuclear cell (PBMC) culture in vitro. We observed that inflammatory response related cytokines namely TNF-α, IFN-γ IL-6 and IL-10 were highly circulated in infected PBMCs suggesting that these cytokines may play important roles in the progression of severity in melioidosis infected neutropenic patients.
    Matched MeSH terms: Burkholderia pseudomallei
  20. Manogaran M, Shukor MY, Yasid NA, Khalil KA, Ahmad SA
    3 Biotech, 2018 Feb;8(2):108.
    PMID: 29430369 DOI: 10.1007/s13205-018-1123-4
    The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate.Burkholderia vietnamiensisstrain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.
    Matched MeSH terms: Burkholderia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links