Displaying publications 161 - 180 of 267 in total

Abstract:
Sort:
  1. Loong SK, Teoh BT, Johari J, Khor CS, Abd-Jamil J, Nor'e SS, et al.
    Case Rep Infect Dis, 2017;2017:2578082.
    PMID: 28331641 DOI: 10.1155/2017/2578082
    Bacillus anthracis is a bacterial pathogen of major concern. The spores of this bacteria can survive harsh environmental conditions for extended periods and are well recognized as a potential bioterror weapon with significant implications. Accurate and timely identification of this Bacillus species in the diagnostic laboratory is essential for disease and public health management. Biosafety Level 3 measures and ciprofloxacin treatment were instituted when B. anthracis was suspected from a patient with gangrenous foot. 16S rDNA sequencing was performed to accurately identify the suspected bacterium, due to the superiority of this method to accurately identify clinically isolated bacteria. B. megaterium was identified as the causative agent and the organism was subsequently treated as a Biosafety Level 2 pathogen.
    Matched MeSH terms: DNA, Ribosomal
  2. Li BX, Shi T, Liu XB, Lin CH, Huang GX
    Plant Dis, 2014 Jul;98(7):1008.
    PMID: 30708897 DOI: 10.1094/PDIS-01-14-0004-PDN
    Rubber tree (Hevea brasiliensis) is an important crop in tropical regions of China. In October 2013, a new stem rot disease was found on cv. Yunyan77-4 at a rubber tree plantation in Hekou, Yunnan Province. There were about 100 plants, and diseased rubber trees accounted for 30% or less. Initially, brown-punctuate secretion appeared on the stem, which was 5 to 6 cm above the ground. Eventually, the secretion became black and no latex produced from the rubber tree bark. After removing the secretion, the diseased bark was brown putrescence, but the circumambient bark was normal. Upon peeling the surface bark, the inner bark and xylem had brown rot and was musty. The junction between health and disease was undulate. On the two most serious plants, parts of leaves on the crown were yellow, and the root near the diseased stem was dry and puce. The pathogen was isolated and designated HbFO01; the pathogenicity was established by following Koch's postulates. The pathogen was cultivated on a potato dextrose agar (PDA) plate at 28°C for 4 days. Ten plants of rubber tree cv. Yunyan77-4 were selected from a disease-free plantation in Haikou, Hainan Province, and the stem diameter was about 7 cm. The bark of five plants was peeled, and one mycelium disk with a diameter of 1 cm was inserted into the cut and covered again with the bark. The other five plants were treated with agar disks as controls. The inoculation site was kept moist for 2 days, and then the mycelium and agar disk were removed. On eighth day, symptoms similar to the original stem lesions were observed on stems of inoculated plants, while only scars formed on stems of control plants. The pathogen was re-isolated from the lesions of inoculated plants. On PDA plates, the pathogen colony was circular and white with tidy edges and rich aerial hyphae. Microscopic examination showed microconidia and chlamydospores were produced abundantly on PDA medium. The falciform macroconidia were only produced on lesions and were slightly curved, with a curved apical cell and foot shaped to pointed basal cell, usually 3-septate, 16.2 to 24.2 × 3.2 to 4.0 μm. Microconidia were produced in false heads, oval, 0-septate, 6.2 to 8.2 × 3.3 to 3.8 μm, and the phialide was cylindrical. Chlamydospores were oval, 6.4 to 7.2 × 3.1 to 3.8 μm, alone produced in hypha. Morphological characteristics of the specimen were similar to the descriptions for Fusarium oxysporum (2). Genomic DNA of this isolate was extracted with a CTAB protocol (4) from mycelium and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4 (1). The full length of this sequence is 503 nt (GenBank Accession No. KJ009335), which exactly matched several sequences (e.g., JF807394.1, JX897002.1, and HQ451888.1) of F. oxysporum. Williams and Liu had listed F. oxysporum as the economically important pathogen of Hevea in Asia (3), while this is, to our knowledge, the first report of stem rot caused by F. oxysporum on rubber tree in China. References: (1) D. E. L. Cooke et al. Fungal Genet. Biol. 30:17, 2000. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 2006. (3) T. H. Williams and P. S. W. Liu. A host list of plant diseases in Sabah, Malaysia, 1976. (4) J. R. Xu et al. Genetics 143:175, 1996.
    Matched MeSH terms: DNA, Ribosomal
  3. Mahmodi F, Kadir JB, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Nov;97(11):1507.
    PMID: 30708462 DOI: 10.1094/PDIS-03-13-0231-PDN
    At least nine Colletotrichum species, particularly Colletotrichum truncatum, have been recorded on legumes worldwide (1). In June 2010, samples of chickpea leaflets showing leaf spot disease symptoms were collected from experimental farms in Ladang Dua, Selangor state of Malaysia. Tan lesions with darker brown borders were observed on leaflets and were associated with premature leaf drop. Stem lesions initially appeared on the lower parts of stems and later progressed higher in the plant. Lesions often girdled the stem and caused severe dieback. Abundant acervuli developed in the lesions visible as black dots. Foliar lesions were removed, surface sterilized in 1% sodium hypochlorite for 2 min, rinsed twice with distilled water, dried on sterilized tissue paper, plated on PDA plates, and incubated at 25°C (3). Three isolates of the fungus were obtained and identified as C. truncatum on the basis of morphological characteristics (2). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). Colony characteristics on PDA varied from greyish white to dark in color and exhibited mycelial growth with sparse acervuli. The isolates produced both sclerotia and setae in culture. Conidia (mean ± SD = 22 ± 0.83 × 3.6 ± 0.08 μm, L/W ratio = 6.1) produced in acervuli were falcate, hyaline, and aseptate, with tapering towards the acute and greatly curved apex. The conidial mass color varied from pale buff to saffron. Isolates produced simple to slightly lobed, mainly short clavate appressoria (mean ± SD = 9.60 ± 0.36 × 6.67 ± 0.29 μm, L/W ratio = 1.45). Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank Accession JX971160), actin (JX975392), β-tubulin (KC109495), histone (KC109535), chitin synthase (KC109575), and glyceraldehyde-3-phosphate dehydrogenase (KC109615) obtained from the representative isolate, CTM37, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. truncatum strains (AJ301945, KC110827, GQ849442, GU228081, GU228359, and HM131501 from GenBank). Isolate CTM37 was used to test pathogenicity in the greenhouse. Five chickpea seeds of cultivar ILC-1929 were sown per pot in four replications. Ten days after seedling emergence, plants were inoculated with a spore suspension (concentration = 106 conidia ml-1) and check pots were sprayed with distilled water. After inoculation, the plants were covered with plastic bags for 48 h and kept at 28 to 33°C and >90% RH. After incubation, the plastic bags were removed and the plants were placed on greenhouse benches and monitored daily for symptom development (3). One week after inoculation, typical anthracnose symptoms developed on the leaves and stems of inoculated plants including acervuli formation, but not on the checks. A fungus with the same colony and conidial morphology as CTM37 was recovered from the lesions on the inoculated plants. The experiment was repeated twice. The ability to accurately diagnose Colletotrichum species is vital for the implementation of effective disease control and quarantine measures. We believe this is the first report of C. truncatum causing anthracnose on chickpea in Malaysia. References: (1) B. D. Gossen et al. Can. J. Plant Pathol. 31:65, 2009. (2) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford. UK. 1992. (3) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
    Matched MeSH terms: DNA, Ribosomal
  4. Choi IY
    Plant Dis, 2011 Feb;95(2):227.
    PMID: 30743439 DOI: 10.1094/PDIS-05-10-0371
    This study was conducted to identify the causal organism of bark dieback disease of highbush blueberry (Vaccinium corymbosum L.) observed in Korea. Blueberry, a woody plant that is native to North America, belongs to the family Ericaceae and genus Vaccinium. Of the 400 species of blueberry in the world, most are distributed in the tropics of Malaysia and Southeast Asia. Highbush blueberry is abundantly grown in Canada and the United States and has become a popular commercial crop in Korea for products such as jam, wine, and sauce. Bark dieback disease of blueberry was found in Sunchang (<5% incidence), Jeollabuk-do, Korea in July 2009. Typical symptoms of the disease were blight and dieback on the stems with lesions extending along entire branches. Morphological examination revealed that the perithecia were of the globose type with a nipple, 155 to 490 (374.6) μm, and brown on the dead bark. Asci were bitunicate and clavate or cylindrical with dimensions of 63 to 125 × 16 to 20 μm and containing eight ascospores. Ascospores were of the long ovoid type with dimensions of 13.2 to 23.7 (17.98) × 25.4 to 41.1 (33.21) μm. From extracted genomic DNA, the internal transcribed spacer (ITS)-5.8S ribosomal DNA region was amplified with universal primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'). A BLAST search of GenBank with the ITS sequence revealed that the Sunchang isolate (GenBank Accession No. HQ384217) had 99 to 100% sequence identity with the following Botryosphaeria dothidea accessions: FJ517657, AJ938005, FJ478129, FJ171723, and AJ938004. Phylogenetic analysis with the Sunchang isolate, B. dothidea strains, and related species revealed that the B. dothidea isolate and strains comprised a monophyletic group distinguished from other Botryosphaeria spp. including B. ribis, B. parva, B. protearum, B. lutea, B. australis, B. rhodina, B. obtuse, and B. stevensii (2). On the basis of morphological and molecular results, the isolate was identified as B. dothidea (Moug.) Ces. & De Not. A culture of B. dothidea isolate was grown on potato dextrose agar (PDA) for 10 days. A 5-mm plug was inoculated into stem wounds created with a No. 2 cork borer in 20 2-year-old disease-free blueberry plants grown in a greenhouse. Six plants inoculated with only PDA plugs served as noninoculated controls. The wounds were covered with Parafilm. After 3 months, the Parafilm was removed and black lesions were observed at the fungal inoculation sites, while no lesion was observed on the control plants. To complete Koch's postulates, the fungus was reisolated from the lesions and confirmed to be B. Dothidea (1). There is an urgent need to determine the spread of this disease in Korea, estimate the losses, and develop methods for reducing damage through biological and eco-friendly cultural control methods. References: (1) D. Jurc et al. Plant Pathol. 55:299, 2006. (2) B. Slippers et al. Mycologia 96:83, 2004.
    Matched MeSH terms: DNA, Ribosomal Spacer
  5. Siddiqui Y, Sariah M, Kausar H
    Plant Dis, 2011 Apr;95(4):495.
    PMID: 30743349 DOI: 10.1094/PDIS-12-10-0866
    Cosmos caudatus Kunth. (Asteraceae), commonly known as ulam raja, is widely grown as an herbal aromatic shrub. In Malaysia, its young leaves are popularly eaten raw as salad with other greens and have been reported to possess extremely high antioxidant properties, which may be partly responsible for some of its believed medicinal functions. In early 2010, a suspected powdery mildew was observed on ulam raja plants at the Agricultural Park of Universiti Putra Malaysia. Initially, individual, white, superficial colonies were small and almost circular. Later, they enlarged and coalesced to cover the whole abaxial leaf surface. With development of the disease, all green parts (leaves, stems, and petioles) became covered with a continuous mat of mildew, giving a dusty appearance. Newly emerged leaves rapidly became infected. Diseased leaves ultimately senesced and dried up, making them aesthetically unattractive and unmarketable. The pathogen produced conidia in short chains (four to six conidia) on erect conidiophores. Conidiophores were unbranched, cylindrical, 125 to 240 μm long, with a slightly swollen foot cell. Individual conidia were hyaline, ellipsoid, and 25 to 30 (27.5) × 15 to 20 (17.5) μm with fibrosin inclusions. Morphological descriptions were consistent with those described for Sphaerotheca fuliginea or S. fusca, which has lately been reclassified as Podosphaera fusca (1). From extracted genomic DNA of P. fusca UPM UR1, the internal transcribed spacer (ITS) region was amplified with ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'). A BLAST search of GenBank with an ITS rDNA sequence of this fungus (GenBank Accession No. HQ589357) showed a maximum identity of 98% to the sequences of two P. fusca isolates (GenBank Accession Nos. AB525915.1 and AB525914.1). To satisfy Koch's postulates, the pathogenicity of fungal strain UPM UR1 was verified on 4-week-old plants. Inoculation was carried out by gently rubbing infected leaves onto healthy plants of C. caudatus. Ten pots of inoculated plants were kept under a plastic humid chamber and 10 pots of noninoculated plants, placed under another chamber, served as controls. After 48 h, the plants were then placed under natural conditions (25 to 28°C). Powdery mildew symptoms, similar to those on diseased field plants, appeared after 7 days on all inoculated plants. The white, superficial colonies enlarged and merged to cover large areas within 2 weeks. The infected leaf tissues became necrotic 6 to 8 days after the appearance of the first symptoms. Sporulation of P. fusca was observed on all infected leaves and stems. No symptoms were seen on the control plants. To our knowledge, this is the first report of P. fusca causing powdery mildew on C. caudatus in Malaysia. This pathogen has also been reported previously to be economically important on a number of other hosts. With ulam raja plants, more attention should be given to prevention and control measures to help manage this disease. Reference: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000.
    Matched MeSH terms: DNA, Ribosomal
  6. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Ashtiani FA
    Plant Dis, 2012 Aug;96(8):1227.
    PMID: 30727084 DOI: 10.1094/PDIS-03-12-0262-PDN
    Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.
    Matched MeSH terms: DNA, Ribosomal
  7. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
    Matched MeSH terms: DNA, Ribosomal
  8. Zhou JN, Lin BR, Shen HF, Pu XM, Chen ZN, Feng JJ
    Plant Dis, 2012 May;96(5):760.
    PMID: 30727539 DOI: 10.1094/PDIS-11-11-0942
    Phalaenopsis orchids, originally from tropical Asia, are mainly planted in Thailand, Singapore, Malaysia, the Philippines, and Taiwan and have gained popularity from consumers all over the world. The cultivation area of Phalaenopsis orchids has been rising and large-scale bases have been established in mainland China, especially South China because of suitable environmental conditions. In September 2011, a soft rot of Phalaenopsis aphrodita was found in a Phalaenopsis planting base in Guangzhou with an incidence of ~15%. Infected plants initially showed water-soaked, pale-to-dark brown pinpoint spots on leaves that were sometimes surrounded by a yellow halo. Spots expanded rapidly with rising humidity and temperatures, and in a few days, severely extended over the blade with a light tan color and darker brown border. Lesions decayed with odorous fumes and tissues collapsed with inclusions exuding. The bacterium advanced to the stem and pedicle. Finally, leaves became papery dry and the pedicles lodged. Six diseased samples were collected, and bacteria were isolated from the edge of symptomatic tissues after sterilization in 0.3% NaOCl for 10 min, rinsing in sterile water three times, and placing on nutrient agar for culture. Twelve representative isolates were selected for further characterization. All strains were gram negative, grew at 37°C, were positive for indole production, and utilized malonate, glucose, and sucrose but not glucopyranoside, trehalose, or palatinose. Biolog identification (version 4.20.05, Hayward, CA) was performed and Pectobacterium chrysanthemi (SIM 0.868) was confirmed for the tested isolates (transfer to genus Dickeya). PCR was used to amplify the 16S rDNAgene with primers 27f and 1492r, dnaX gene with primers dnaXf and dnaXr (3), and gyrB gene with primers gyrBf (5'-GAAGGYAAAVTKCATCGTCAGG-3') and gyrB-r1 (5'-TCARATATCRATATTCGCYGCTTTC-3') designed on the basis of the published gyrB gene sequences of genus Dickeya. BLASTn was performed online, and phylogeny trees (100% bootstrap values) were created by means of MEGA 5.05 for these gene sequences, respectively. Results commonly showed that the representative tested strain, PA1, was most homologous to Dickeya dieffenbachiae with 98% identity for 16S rDNA(JN940859), 97% for dnaX (JN989971), and 96% for gyrB (JN971031). Thus, we recommend calling this isolate D. dieffenbachiae PA1. Pathogenicity tests were conducted by injecting 10 P. aphrodita seedlings with 100 μl of the bacterial suspension (1 × 108 CFU/ml) and another 10 were injected with 100 μl of sterile water as controls. Plants were inoculated in a greenhouse at 28 to 32°C and 90% relative humidity. Soft rot symptoms were observed after 2 days on the inoculated plants, but not on the control ones. The bacterium was isolated from the lesions and demonstrated identity to the inoculated plant by the 16S rDNA sequence comparison. Previously, similar diseases of P. amabilis were reported in Tangshan, Jiangsu, Zhejiang, and Wuhan and causal agents were identified as Erwinia spp. (2), Pseudomonas grimontii (1), E. chrysanthemi, and E. carotovora subsp. carovora (4). To our knowledge, this is the first report of D. dieffenbachiae causing soft rot disease on P. aphrodita in China. References: (1) X. L. Chu and B. Yang. Acta Phytopathol. Sin. 40:90, 2010. (2) Y. M. Li et al. J. Beijing Agric. Coll. 19:41, 2004. (3) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (4) Z. Y. Wu et al. J. Zhejiang For. Coll. 27:635, 2010.
    Matched MeSH terms: DNA, Ribosomal
  9. Kannan A, Rama Rao S, Ratnayeke S, Yow YY
    PeerJ, 2020;8:e8755.
    PMID: 32274263 DOI: 10.7717/peerj.8755
    Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06-6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
    Matched MeSH terms: DNA, Ribosomal
  10. Ng YH, Fong MY, Subramaniam V, Shahari S, Lau YL
    Res Vet Sci, 2015 Dec;103:201-4.
    PMID: 26679818 DOI: 10.1016/j.rvsc.2015.10.009
    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population.
    Matched MeSH terms: DNA, Ribosomal
  11. Phung CC, Heng PS, Liew TS
    PeerJ, 2017;5:e3981.
    PMID: 29104827 DOI: 10.7717/peerj.3981
    Leptopoma is a species rich genus with approximately 100 species documented. Species-level identification in this group has been based on shell morphology and colouration, as well as some anatomical features based on small sample sizes. However, the implications of the inter- and intra-species variations in shell form to the taxonomy of Leptopoma species and the congruency of its current shell based taxonomy with its molecular phylogeny are still unclear. There are four Leptopoma species found in Sabah, Borneo, and their taxonomy status remains uncertain due to substantial variation in shell forms. This study focuses on the phylogenetic relationships and geographical variation in shell form of three Leptopoma species from Sabah. The phylogenetic relationship of these species was first estimated by performing Maximum Likelihood and Bayesian analysis based on mitochondrial genes (16S rDNA and COI) and nuclear gene (ITS-1). Then, a total of six quantitative shell characters (i.e., shell height, shell width, aperture height, aperture width, shell spire height, and ratio of shell height to width) and three qualitative shell characters (i.e., shell colour patterns, spiral ridges, and dark apertural band) of the specimens were mapped across the phylogenetic tree and tested for phylogenetic signals. Data on shell characters of Leptopoma sericatum and Leptopoma pellucidum from two different locations (i.e., Balambangan Island and Kinabatangan) where both species occurred sympatrically were then obtained to examine the geographical variations in shell form. The molecular phylogenetic analyses suggested that each of the three Leptopoma species was monophyletic and indicated congruence with only one of the shell characters (i.e., shell spiral ridges) in the current morphological-based classification. Although the geographical variation analyses suggested some of the shell characters indicating inter-species differences between the two Leptopoma species, these also pointed to intra-species differences between populations from different locations. This study on Leptopoma species is based on small sample size and the findings appear only applicable to Leptopoma species in Sabah. Nevertheless, we anticipate this study to be a starting point for more detailed investigations to include the other still little-known (ca. 100) Leptopoma species and highlights a need to assess variations in shell characters before they could be used in species classification.
    Matched MeSH terms: DNA, Ribosomal
  12. Yong HS, Lim PE, Tan J, Ng YF, Eamsobhana P, Suana IW
    Sci Rep, 2014 Jul 03;4:5553.
    PMID: 24989852 DOI: 10.1038/srep05553
    Dragonflies of the genus Orthetrum are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of Orthetrum dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of Orthetrum. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum. This study also reveals distinct genetic lineages between O. pruinosum schneideri (occurring in Malaysia) and O. pruinosum neglectum (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  13. Ang SK, Yahya A, Abd Aziz S, Md Salleh M
    Prep Biochem Biotechnol, 2015;45(3):279-305.
    PMID: 24960316 DOI: 10.1080/10826068.2014.923443
    This study presents the isolation and screening of fungi with excellent ability to degrade untreated oil palm trunk (OPT) in a solid-state fermentation system (SSF). Qualitative assay of cellulases and xylanase indicates notable secretion of both enzymes by 12 fungal strains from a laboratory collection and 5 strains isolated from a contaminated wooden board. High production of these enzymes was subsequently quantified in OPT in SSF. Aspergillus fumigates SK1 isolated from cow dung gives the highest xylanolytic activity (648.448 U g(-1)), generally high cellulolytic activities (CMCase: 48.006, FPase: 6.860, beta-glucosidase: 16.328 U g(-1)) and moderate lignin peroxidase activity (4.820 U/g), and highest xylanolytic activity. The xylanase encoding gene of Aspergillus fumigates SK1 was screened using polymerase chain reaction by a pair of degenerate primers. Through multiple alignment of the SK1 strain's xylanase nucleotide sequences with other published xylanases, it was confirmed that the gene belonged to the xylanase glycoside hydrolase family 11 (GH11) with a protein size of 24.49 kD. Saccharification of lemongrass leaves using crude cellulases and xylanase gives the maximum reducing sugars production of 6.84 g/L with glucose as the major end product and traces of phenylpropanic compounds (vanillic acid, p-coumaric acid, and ferulic acid).
    Matched MeSH terms: DNA, Ribosomal/genetics
  14. Kitano YF, Benzoni F, Arrigoni R, Shirayama Y, Wallace CC, Fukami H
    PLoS One, 2014;9(5):e98406.
    PMID: 24871224 DOI: 10.1371/journal.pone.0098406
    The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  15. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, et al.
    Malar J, 2014;13:168.
    PMID: 24886266 DOI: 10.1186/1475-2875-13-168
    Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia.
    Matched MeSH terms: DNA, Ribosomal/genetics
  16. Tan TK, Panchadcharam C, Low VL, Lee SC, Ngui R, Sharma RS, et al.
    BMC Vet Res, 2014;10:38.
    PMID: 24502557 DOI: 10.1186/1746-6148-10-38
    Haemonchus contortus and Trichostrongylus spp. are reported to be the most prevalent and highly pathogenic parasites in livestock, particularly in small ruminants. However, the routine conventional tool used in Malaysia could not differentiate the species accurately and therefore limiting the understanding of the co-infections between these two genera among livestock in Malaysia. This study is the first attempt to identify the strongylids of veterinary importance in Malaysia (i.e., H. contortus and Trichostrongylus spp.) by amplification and sequencing of the Internal Transcribed Spacer II DNA region.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  17. Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Al-Mekhlafi AM, Ahmed A, Surin J
    PLoS One, 2013;8(12):e84372.
    PMID: 24376805 DOI: 10.1371/journal.pone.0084372
    BACKGROUND: Blastocystis is a genetically diverse and a common intestinal parasite of humans with a controversial pathogenic potential. This study was carried out to identify the Blastocystis subtypes and their association with demographic and socioeconomic factors among outpatients living in Sebha city, Libya.

    METHODS/FINDINGS: Blastocystis in stool samples were cultured followed by isolation, PCR amplification of a partial SSU rDNA gene, cloning, and sequencing. The DNA sequences of isolated clones showed 98.3% to 100% identity with the reference Blastocystis isolates from the Genbank. Multiple sequence alignment showed polymorphism from one to seven base substitution and/or insertion/deletion in several groups of non-identical nucleotides clones. Phylogenetic analysis revealed three assemblage subtypes (ST) with ST1 as the most prevalent (51.1%) followed by ST2 (24.4%), ST3 (17.8%) and mixed infections of two concurrent subtypes (6.7%).

    BLASTOCYSTIS: ST1 infection was significantly associated with female (P = 0.009) and low educational level (P = 0.034). ST2 was also significantly associated with low educational level (P= 0.008) and ST3 with diarrhoea (P = 0.008).

    CONCLUSION: Phylogenetic analysis of Libyan Blastocystis isolates identified three different subtypes; with ST1 being the predominant subtype and its infection was significantly associated with female gender and low educational level. More extensive studies are needed in order to relate each Blastocystis subtype with clinical symptoms and potential transmission sources in this community.

    Matched MeSH terms: DNA, Ribosomal/genetics
  18. Freitas LFD, Barriga EJC, Barahona PP, Lachance MA, Rosa CA
    Int J Syst Evol Microbiol, 2013 Nov;63(Pt 11):4324-4329.
    PMID: 24014626 DOI: 10.1099/ijs.0.052282-0
    Twenty-four yeast strains were isolated from ephemeral flowers of Ipomoea spp. and Datura sp. and their associated insects in the Galápagos Archipelago, Ecuador, and from Ipomoea spp. and associated insects in the Cameron Highlands, Malaysia. Sequences of the D1/D2 domains of the large subunit rRNA gene indicated that these strains belong to a novel yeast species of the Kodamaea clade, although the formation of ascospores was not observed. The closest relative is Candida restingae. The human-mediated dispersion of this species by transpacific contacts in ancient times is suggested. The name Kodamaea transpacifica f.a., sp. nov. is proposed to accommodate these isolates. The type strain is CLQCA-24i-070(T) ( = CBS 12823(T) = NCYC 3852(T)); MycoBank number MB 803609.
    Matched MeSH terms: DNA, Ribosomal Spacer/genetics
  19. Learn-Han L, Yoke-Kqueen C, Shiran MS, Vui-Ling CM, Nurul-Syakima AM, Son R, et al.
    Genet. Mol. Res., 2012;11(1):277-91.
    PMID: 22370930 DOI: 10.4238/2012.February.8.3
    The diversity of specific bacteria taxa, such as the actinomycetes, has not been reported from the Antarctic island of Barrientos. The diversity of actinomycetes was estimated with two different strategies that use PCR-denaturing gradient gel electrophoresis. First, a PCR was applied, using a group-specific primer that allows selective amplification of actinomycete sequences. Second, a nested-PCR approach was used that allows the estimation of the relative abundance of actinomycetes within the bacterial community. Molecular identification, which was based on 16S rDNA sequence analysis, revealed eight genera of actinomycetes, Actinobacterium, Actinomyces, an uncultured Actinomycete, Streptomyces, Leifsonia, Frankineae, Rhodococcus, and Mycobacterium. The uncultured Actinomyces sp and Rhodococcus sp appear to be the prominent genera of actinomycetes in Barrientos Island soil. PCR-denaturing gradient gel electrophoresis patterns were used to look for correlations between actinomycete abundance and environmental characteristics, such as type of rookery and vegetation. There was a significant positive correlation between type of rookery and abundance of actinomycetes; soil samples collected from active chinstrap penguin rookeries had the highest actinomycete abundance. Vegetation type, such as moss, which could provide a microhabitat for bacteria, did not correlate significantly with actinomycete abundance.
    Matched MeSH terms: DNA, Ribosomal/genetics
  20. Cha TS, Chen JW, Goh EG, Aziz A, Loh SH
    Bioresour Technol, 2011 Nov;102(22):10633-40.
    PMID: 21967717 DOI: 10.1016/j.biortech.2011.09.042
    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
    Matched MeSH terms: DNA, Ribosomal/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links