Displaying publications 161 - 180 of 186 in total

Abstract:
Sort:
  1. Hasan SI, Mohd Ashari NS, Mohd Daud K, Che Husin CM
    Int J Rheum Dis, 2013 Aug;16(4):430-6.
    PMID: 23992264 DOI: 10.1111/1756-185X.12062
    BACKGROUND: The ethiopathogenesis of increased apoptosis of lymphocytes in systemic lupus erythematosus (SLE) is still incompletely understood but anti-C1q autoantibodies have been shown to induce apoptosis in lymphocytes from healthy donors and certain cell lines.
    AIM: This study was undertaken to investigate the relationship between peripheral lymphocyte apoptosis and serum levels of anti-C1q autoantibodies in SLE patients.
    METHODS: The sera of 124 patients with SLE involving 62 active SLE and 62 inactive SLE, fulfilling America College of Rheumatology (ACR) classification criteria for SLE (1997) were incubated with peripheral blood lymphocytes of healthy donors. The results were compared with 124 sex- and age-matched normal controls. Apoptotic lymphocytes (AL) were detected by flow cytometry using annexin V and propidium iodide binding. Anti-C1q autoantibodies were detected by an enzyme-linked immunoassay kit for all SLE patients.
    RESULTS: Results demonstrated that the percentage of AL in the peripheral blood of active SLE patients was significantly higher (n = 62, 34.95 ± 12.78%) than that of the inactive SLE patients (n = 62, 30.69 ± 10.13%, P = 0.042, 95%CI = 0.16-8.36) and normal controls (n = 124, 27.92 ± 10.22%, P = 0.001, 95%CI = 3.33-10.73). The percentage of AL significantly correlated with serum levels of anti-C1q autoantibodies in the active SLE patients (r = 0.263, P = 0.039) but not in the inactive SLE patients (r = 0.170, P = 0.185).
    CONCLUSION: The results of this study suggest that increased serum levels of anti-C1q autoantibodies are responsible for apoptosis and may play a pathogenic role in SLE patients, especially in active disease.
    KEYWORDS: anti-C1q; apoptosis; flowcytometry; systemic lupus erythematosus
    Study site: Medical outpatient clinic and medical wards, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Flow Cytometry
  2. Siew EL, Chan KM, Williams GT, Ross D, Inayat-Hussain SH
    Free Radic. Biol. Med., 2012 Oct 15;53(8):1616-24.
    PMID: 22687461 DOI: 10.1016/j.freeradbiomed.2012.05.046
    The Fau gene (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified as a potential tumor suppressor gene using a forward genetics approach. Downregulation of Fau by overexpression of its reverse sequence has been shown to inhibit apoptosis induced by DNA-damaging agents. To address a potential role of Fau in benzene toxicity, we investigated the apoptotic effects of hydroquinone (HQ), a major benzene metabolite, in W7.2 mouse thymoma cells transfected with either a plasmid construct expressing the antisense sequence of Fau (rfau) or the empty vector (pcDNA3.1) as a control. HQ induced apoptosis via increased production of reactive oxygen species and DNA damage, measured using dihydroethidine (HE) staining and alkaline Comet assay, respectively, in W7.2 pcDNA3.1 cells. In contrast, when Fau was downregulated by the antisense sequence in W7.2 rfau cells, HQ treatment did not cause DNA damage and oxidative stress and these cells were markedly more resistant to HQ-induced apoptosis. Further investigation revealed that there was an upregulation of NAD(P)H: quinone oxidoreductase 1 (NQO1), a detoxification enzyme for benzene-derived quinones, in W7.2 rfau cells. Compromising cellular NQO1 by use of a specific mechanism-based inhibitor (MAC 220) and NQO1 siRNA resensitized W7.2 rfau cells to HQ-induced apoptosis. Silencing of Fau in W7.2 wild-type cells resulted in increased levels of NQO1, confirming that downregulation of Fau results in NQO1 upregulation which protects against HQ-induced apoptosis.
    Matched MeSH terms: Flow Cytometry
  3. Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Sukari MA, Abdullah R, et al.
    J Ethnopharmacol, 2010 Oct 5;131(3):592-600.
    PMID: 20673794 DOI: 10.1016/j.jep.2010.07.043
    The plant Typhonium flagelliforme (TF), commonly known as 'rodent tuber' in Malaysia, is often used as traditional remedy for cancer, including leukemia.
    Matched MeSH terms: Flow Cytometry
  4. Lutfi AN, Kannan TP, Fazliah MN, Jamaruddin MA, Saidi J
    Aust Dent J, 2010 Mar;55(1):79-85.
    PMID: 20415916 DOI: 10.1111/j.1834-7819.2009.01185.x
    The biological examination of pulp injury, repair events and response of dental pulp stem cells to dental restorative materials is important to accomplish restorative treatment, especially to commonly used dental materials in paediatric dentistry, such as glass ionomer cement (GIC) and calcium hydroxide (Ca(OH)(2)) lining cement.
    Matched MeSH terms: Flow Cytometry
  5. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
    Matched MeSH terms: Flow Cytometry
  6. Shanmugam H, Eow GI, Nadarajan VS
    Malays J Pathol, 2009 Jun;31(1):63-6.
    PMID: 19694316 MyJurnal
    Adult T-cell leukaemia/lymphoma (ATLL) is a rare T lymphoproliferative disorder which is aetiologically linked with human T-cell lymphotropic virus type-1 (HTLV-1). HTLV-1 is endemic in Japan, Caribbean and Africa. The highest incidence of ATLL is in Japan although sporadic cases have been reported elsewhere in the world. We describe a case of ATLL with an unusual presentation which we believe is the first reported case of ATLL in Malaysia based on our literature search. A 51-year-old Indian lady was referred to University Malaya Medical Centre for an incidental finding of lymphocytosis while being investigated for pallor and giddiness. Clinical examination revealed bilateral shotty cervical lymph nodes with no hepato-splenomegaly or skin lesions. Laboratory investigations showed absolute lymphocytosis (38 x 10(9)/L) with a mildly increased serum lactate dehydrogenase. The peripheral blood smear showed the presence of predominantly small to medium sized, non-flower lymphocytes. The bone marrow showed similar findings of prominent lymphocytosis. Immunophenotyping of the bone marrow mononuclear cells showed CD3+, CD4+, CD5+, CD7- and CD25+ which is characteristic of ATLL phenotype. HTLV-1 infection was confirmed by the presence of HTLV-1 proviral DNA in the tumor cells using conventional Polymerase Chain Reaction (PCR) and real-time PCR. Here, we discuss the pathogenesis and characteristics of ATLL as well as the detection of HTLV-1 by real time PCR.
    Matched MeSH terms: Flow Cytometry
  7. Lee YH, Pang SW, Tan KO
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):224-229.
    PMID: 27003254 DOI: 10.1016/j.bbrc.2016.03.083
    PNMA2, a member of the Paraneoplastic Ma Family (PNMA), was identified through expression cloning by using anti-sera from patients with paraneoplastic disorder. Tissue expression studies showed that PNMA2 was predominantly expressed in normal human brain; however, the protein was shown to exhibit abnormal expression profile as it was found to be expressed in a number of tumour tissues obtained from paraneopalstic patients. The abnormal expression profile of PNMA2 suggests that it might play an important role in tumorigenesis; however, apart from protein expression and immunological studies, the physiological role of PNMA2 remains unclear. In order to determine potential role of PNMA2 in tumorigenesis, and its functional relationship with PNMA family members, MOAP-1 (PNMA4) and PNMA1, expression constructs encoding the respective proteins were generated for both in vitro and in vivo studies. Our investigations showed that over-expressed MOAP-1 and PNMA1 promoted apoptosis and chemo-sensitization in MCF-7 cells as evidenced by condensed nuclei and Annexin-V positive MCF-7 cells; however, the effects mediated by these proteins were significantly inhibited or abolished when co-expressed with PNMA2 in MCF-7 cells. Furthermore, co-immunoprecipitation study showed that PNMA1 and MOAP-1 failed to associate with each other but readily formed respective heterodimer with PNMA2, suggesting that PNMA2 functions as antagonist of MOAP-1 and PNMA1 through heterodimeric interaction.
    Matched MeSH terms: Flow Cytometry
  8. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Oncol Rep, 2013 Sep;30(3):1035-44.
    PMID: 23807159 DOI: 10.3892/or.2013.2573
    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
    Matched MeSH terms: Flow Cytometry
  9. Aung SW, Abu Kasim NH, Ramasamy TS
    Methods Mol Biol, 2019;2045:323-335.
    PMID: 31201682 DOI: 10.1007/7651_2019_242
    The therapeutic potential of human mesenchymal stromal stem cells (hMSCs) for cell-based therapeutic is greatly influenced by the in vitro culture condition including the culture conditions. Nevertheless, there are many technical challenges needed to be overcome prior to the clinical use including the quantity, quality, and heterogeneity of the cells. Therefore, it is necessary to develop a stem cell culture procedure or protocol for cell expansion in order to generate reproducible and high-quality cells in accordance with good manufacturing practice for clinical and therapeutic purposes. Here we assessed the MSCs characteristic of human Wharton's jelly mesenchymal stromal cells in in vitro culture according to the criteria established by the International Society for Cellular Therapy. Besides, the viability of the WJMSCs was determined in order to increase the confidence that the cells are employed to meet the therapeutic efficacy.
    Matched MeSH terms: Flow Cytometry
  10. Jafarlou M, Baradaran B, Shanehbandi D, Saedi TA, Jafarlou V, Ismail P, et al.
    Cell Mol Biol (Noisy-le-grand), 2016 May 30;62(6):44-9.
    PMID: 27262801
    Acute myeloid leukemia (AML) is one of the most frequent types of leukemia which mostly affects adult people. Resistance to therapeutic drugs is considered as a major clinical concern resulting in a weaker response to chemotherapy, disease relapse and decreased survival rate. Survivin, a member of Inhibitor of Apoptosis Proteins (IAPs), is associated with drug resistance and inhibition of apoptotic mechanisms in numerous hematological malignancies. In the present study, we examined the combined effect of etoposide and siRNA-mediated silencing of survivin on U-937 acute myeloid leukemia cells. The AML cells were transfected with survivin specific siRNA and gene knockdown was confirmed by quantitative real time PCR and western blotting. Subsequently, U-937 cells were assessed for response to etoposide treatment and apoptosis rate was measured with flowcytometery. The cytotoxic effects in siRNA-etoposide group were measured and compared to etoposide single therapy group. Survivin siRNA effectively knocked down the mRNA and protein levels of survivin, which led to lower cell proliferation and enhanced apoptosis. Furthermore, combined treatment of etoposide and survivin siRNA synergistically increased the cell toxic effects of etoposide and its ability to induce apoptosis.
    Matched MeSH terms: Flow Cytometry
  11. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: Flow Cytometry
  12. Jalalonmuhali M, Ng KP, Mohd Shariff NH, Lee YW, Wong AH, Gan CC, et al.
    Transplant Proc, 2020 05 21;52(6):1718-1722.
    PMID: 32448671 DOI: 10.1016/j.transproceed.2020.02.140
    The shortage of deceased donors led to an increase of living related renal transplant performed in the presence of donor-specific antibodies (DSAs) or ABO incompatibilities. There are various desensitization protocols that have been proposed. Here, we describe the outcome of these sensitized patients. This is a prospective cohort study recruiting all kidney transplant recipients from August 2016 until June 2018. Deceased donations, ABO incompatible patients, and sensitized patients who were not prescribed on our desensitization protocol were excluded. Recipients were screened for the presence of HLA-antibodies 1 month before transplant. Those with positive DSA will undergo flow cytometry (risk stratification). We are using a protocol that consisted of intravenous rituximab 200 mg (day -14), intravenous antithymocyte globulin 5mg/kg (day 0-4), plasma exchange post transplant for patients with mean fluorescent intensity (MFI) < 3000, and negative flow cytometry. Those patients with MFI ≥ 3000 or positive flow cytometry need extra cycles pretransplant. A total of 40 patients were recruited, and 20 were sensitized patients. Among the sensitized group 4 of 20 had flow cytometry crossmatch positive, while all had preformed HLA-DSA. A total of 8 of 20 had class I HLA-DSA, 11 of 20 had class II HLA-DSA, and 1of 20 was positive for both class I and II HLA-DSA. Mean immunodominant MFI was 2133.4 (standard deviation [SD], 4451.24) and 1383.7 (SD, 2979.02) for class I and class II, respectively. At 1 year, mean serum creatinine was 108.90 (SD, 25.95) and 118.42 (SD, 31.68) in sensitized and unsensitized patients, respectively. One of 20 unsensitized patients had Banff 1B rejection at 3 months, and there was no significant rejection in sensitized patients at 6 months and 1 year. There was no difference in the occurrence of de novo HLA-DSA between the groups. Desensitization protocols may help to overcome incompatibility barriers in living donor renal transplant. The combination of low-dose rituximab, antithymocyte globulin, and judicious use of plasma exchange has worked well for our cohort.
    Matched MeSH terms: Flow Cytometry
  13. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Flow Cytometry
  14. Lim SH, Lee HB, Ho AS
    Photochem Photobiol, 2011 Sep-Oct;87(5):1152-8.
    PMID: 21534974 DOI: 10.1111/j.1751-1097.2011.00939.x
    In our screening for photosensitizers from natural resources, 15(1)-hydroxypurpurin-7-lactone ethyl methyl diester (compound 1) was isolated for the first time from an Araceae plant. To evaluate the efficacy of compound 1 as a photosensitizer for head and neck cancers, compound 1 was studied in reference to a known photosensitizer pheophorbide-a (Pha), in terms of photophysical properties, singlet oxygen generation and in in vitro experiments (intracellular uptake and phototoxicity assays) in two oral (HSC2 and HSC3) and two nasopharyngeal (HK1 and C666-1) cancer cell lines. In this study, compound 1 exhibited higher intracellular uptake over 24 h compared with Pha in both HSC3 and HK1 cells. When activated by ≥4.8 J cm(-2) of light, compound 1 was slightly more potent as a photosensitizer than Pha by consistently having marginally lower IC(50) values across different cell lines. In flow cytometry experiments to study the mechanism of photoactivated cell death in HSC3, compound 1 was observed to induce more pronounced apoptosis compared with Pha, which may have been driven by the transient G(2)/M cell cycle block which was also observed. These promising results on compound 1 warrant its further investigation as a clinically useful photodynamic therapy agent for head and neck cancer.
    Matched MeSH terms: Flow Cytometry
  15. Barathan M, Mohamed R, Saeidi A, Vadivelu J, Chang LY, Gopal K, et al.
    Eur J Clin Invest, 2015 May;45(5):466-74.
    PMID: 25721991 DOI: 10.1111/eci.12429
    Hepatitis C virus (HCV) causes persistent disease in ~85% of infected individuals, where the viral replication appears to be tightly controlled by HCV-specific CD8+ T cells. Accumulation of senescent T cells during infection results in considerable loss of functional HCV-specific immune responses.
    Matched MeSH terms: Flow Cytometry
  16. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Flow Cytometry
  17. Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS
    Biomed Res Int, 2013;2013:604787.
    PMID: 24078922 DOI: 10.1155/2013/604787
    In the present study, we evaluated the effect of brown seaweeds Sargassum muticum methanolic extract (SMME), against MCF-7 and MDA-MB-231 breast cancer cell lines proliferation. This algae extract was also evaluated for reducing activity and total polyphenol content. The MTT assay results indicated that the extracts were cytotoxic against breast cancer cell lines in a dose-dependent manner, with IC50 of 22 μg/ml for MCF-7 and 55 μg/ml for MDA-MB-231 cell lines. The percentages of apoptotic MCF-7-treated cells increased from 13% to 67% by increasing the concentration of the SMME. The antiproliferative efficacy of this algal extract was positively correlated with the total polyphenol contents, suggesting a causal link related to extract content of phenolic acids. Cell cycle analysis showed a significant increase in the accumulation of SMME-treated cells at sub-G1 phase, indicating the induction of apoptosis by SMME. Further apoptosis induction was confirmed by Hoechst 33342 and AO/PI staining. Also SMME implanted in vivo into fertilized chicken eggs induced dose-related antiangiogenic activity in the chorioallantoic membrane (CAM). Our results imply a new insight on the novel function of Sargassum muticum polyphenol-rich seaweed in cancer research by induction of apoptosis, antioxidant, and antiangiogenesis effects.
    Matched MeSH terms: Flow Cytometry
  18. Jada SR, Matthews C, Saad MS, Hamzah AS, Lajis NH, Stevens MF, et al.
    Br J Pharmacol, 2008 Nov;155(5):641-54.
    PMID: 18806812 DOI: 10.1038/bjp.2008.368
    BACKGROUND AND PURPOSE: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death.
    EXPERIMENTAL APPROACH: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry.
    KEY RESULTS: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G(1) arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis.
    CONCLUSION AND IMPLICATIONS: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G(1) phase cell cycle arrest, coupled with induction of apoptosis.
    Matched MeSH terms: Flow Cytometry
  19. Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, et al.
    Stem Cell Res Ther, 2019 06 13;10(1):163.
    PMID: 31196196 DOI: 10.1186/s13287-019-1282-1
    INTRODUCTION: Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs).

    METHODS: Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration.

    RESULTS: An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups.

    CONCLUSION: Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.

    Matched MeSH terms: Flow Cytometry
  20. Yazid MD, Hung-Chih C
    Cell Commun Signal, 2021 10 27;19(1):105.
    PMID: 34706731 DOI: 10.1186/s12964-021-00785-0
    BACKGROUND: The absence of dystrophin has gave a massive impact on myotube development in Muscular Dystrophy pathogenesis. One of the conserved signaling pathways involved in skeletal muscle differentiation is the PI3K/Akt/mTOR pathway that plays a vital role in autophagy regulation. To further understand and establish targeted therapy in dystrophin-deficient myoblasts, protein expression profiling has been determined which provides information on perturbed autophagy modulation and activation.

    METHODS: In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer.

    RESULTS: In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features.

    CONCLUSION: Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.

    Matched MeSH terms: Flow Cytometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links