Displaying publications 161 - 180 of 437 in total

Abstract:
Sort:
  1. Tiong KH, Mohammed Yunus NA, Yiap BC, Tan EL, Ismail R, Ong CE
    PLoS One, 2014;9(1):e86230.
    PMID: 24475091 DOI: 10.1371/journal.pone.0086230
    Human cytochrome P450 2A6 (CYP2A6) is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22) have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor, 8-methoxypsoralen (8-MOP), in inhibition of these alleles and we hypothesized that translational mutations in these variants are likely to give impact on 8-MOP inhibitory potency. The CYP2A6 variant and the wild type proteins were subjected to 8-MOP inhibition to yield IC50 values. In general, a similar trend of change in the IC50 and Km values was noted among the four mutants towards coumarin oxidation. With the exception of CYP2A6 16, differences in IC50 values were highly significant which implied compromised interaction of the mutants with 8-MOP. Molecular models of CYP2A6 were subsequently constructed and ligand-docking experiments were performed to rationalize experimental data. Our docking study has shown that mutations have induced enlargement of the active site volume in all mutants with the exception of CYP2A6 16. Furthermore, loss of hydrogen bond between 8-MOP and active site residue Asn297 was evidenced in all mutants. Our data indicate that the structural changes elicited by the sequence mutations could affect 8-MOP binding to yield differential enzymatic activities in the mutant CYP2A6 proteins.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Khaw KY, et al.
    Med Chem, 2014;10(5):512-20.
    PMID: 24138113
    A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar AR
    Biomed Res Int, 2013;2013:783690.
    PMID: 23509778 DOI: 10.1155/2013/783690
    Marine microalgae have been prominently featured in cancer research. Here, we examined cytotoxic effect and apoptosis mechanism of crude ethanol extracts of an indigenous microalga, Chaetoceros calcitrans (UPMAAHU10) on human breast cell lines. MCF-7 was more sensitive than MCF-10A with IC50 value of 3.00 ± 0.65, whilst the IC50 value of Tamoxifen against MCF-7 was 12.00 ± 0.52  μg/mL after 24 hour incubation. Based on Annexin V/Propidium iodide and cell cycle flow cytometry analysis, it was found that inhibition of cell growth by EEC on MCF-7 cells was through the induction of apoptosis without cell cycle arrest. The apoptotic cells at subG0/G1 phase in treated MCF-7 cells at 48 and 72 hours showed 34 and 16 folds increased compared to extract treated MCF-10A cells which showed only 6 and 7 folds increased at the same time points, respectively. Based on GeXP study, EEC induced apoptosis on MCF-7 cells via modulation of CDK2, MDM2, p21Cip1, Cyclin A2, Bax and Bcl-2. The EEC treated MCF-7 cells also showed an increase in Bax/Bcl-2 ratio that in turn activated the caspase-dependent pathways by activating caspase 7. Thus, marine microalga, Chaetoceros calcitrans may be considered a good candidate to be developed as a new anti-breast cancer drug.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Mutee AF, Salhimi SM, Ghazali FC, Aisha AF, Lim CP, Ibrahim K, et al.
    Pak J Pharm Sci, 2012 Oct;25(4):697-703.
    PMID: 23009983
    Acanthaster planci, the crown-of-thorns starfish, naturally endowed with the numerous toxic spines around the dorsal area of its body. Scientific investigations demonstrated several toxico-pharmacological efficacies of A. planci such as, myonecrotic activity, hemorrhagic activity, hemolytic activity, mouse lethality, phospholipase A2 (PLA2) activity, capillary permeability-increasing activity, edema-forming activity, anticoagulant activity and histamine-releasing activity from mast cells. The present study was performed to evaluate the cytotoxic activity of A. planci extracts obtained by different methods of extraction on MCF-7 and HCT-116, human breast and colon cancer cell lines, respectively. Results of the cell proliferation assay showed that PBS extract exhibited very potent cytotoxic activity against both MCF-7 and HCT-116 cell lines with IC(50) of 13.48 μg/mL and 28.78 μg/mL, respectively, while the extracts prepared by Bligh and Dyer method showed moderate cytotoxicity effect against MCF-7 and HCT-116 cell lines, for chloroform extract, IC(50) = 121.37 μg/mL (MCF-7) and 77.65 μg/mL (HCT-116), and for methanol extract, IC(50) = 46.11 μg/mL (MCF-7) and 59.29 μg/mL (HCT-116). However, the extracts prepared by sequential extraction procedure from dried starfish found to be ineffective. This study paves the way for further investigation on the peptide composition in the PBS extract of the starfish to discover potential chemotherapeutic agents.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Sofian ZM, Abdullah JM, Rahim AA, Shafee SS, Mustafa Z, Razak SA
    Pak J Pharm Sci, 2012 Oct;25(4):831-7.
    PMID: 23010001
    The possible cytotoxic effects of vancomycin and its complex with beta-cyclodextrin (β-CD) on human glial cell line (CRL 8621) were studied accordingly by means of MTS assay. The cultured cells were incubated with various concentrations of vancomycin, β-CD as well as β-CD/vancomycin complex ranging from 4.69 to 300 ug/ml. A linear dose-dependency cytotoxicity followed by hermetic-like biphasic dose-dependence was observed after incubation period of 72 hours. In general, significant increase (p<0.001) of cell proliferation was observed at lower concentrations: <18.75 μg/ml for cells treated with β-CD and their complex while < 9.38 μg/ml for cells treated with vancomycin. In contrary, regardless of the treatments given, significant (p<0.001) reduce in cell survival was found at higher concentrations >150 μg/ml. In particular, 50 % inhibitory in vitro was achieved at the concentrations of 115.95 μg/ml (for β-CD), 116.48 μg/ml (for vancomycin) and 115.44 μg/ml (for β-CD/vancomycin complex).
    Matched MeSH terms: Inhibitory Concentration 50
  6. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S
    Molecules, 2012 May 25;17(6):6179-95.
    PMID: 22634834 DOI: 10.3390/molecules17066179
    Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC₅₀ values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Helaly SE, Kulik A, Zinecker H, Ramachandaran K, Tan GY, Imhoff JF, et al.
    J Nat Prod, 2012 Jun 22;75(6):1018-24.
    PMID: 22642587 DOI: 10.1021/np200580g
    A new 32-membered macrolactone antibiotic, named langkolide, was isolated from the mycelium of Streptomyces sp. Acta 3062. The langkolide structure was determined by HR-MS and 1D and 2D NMR as a 32-membered macrolactone connected from an overhanging polyketide tail to a naphthoquinone unit mediated by two carbohydrate moieties. The producing strain was isolated from a rhizosphere soil of Clitorea sp. collected at Burau Bay, Langkawi, Malaysia, and was characterized by its morphological and chemotaxonomic features in addition to its 16S rRNA gene sequence. It was identified as a member of the Streptomyces galbus clade. Langkolide exhibited various bioactivities including antimicrobial and antiproliferative activities. Furthermore, langkolide inhibited human recombinant phosphodiesterase 4 with an IC(50) value of 0.48 μM.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Kavitha N, Noordin R, Kit-Lam C, Sasidharan S
    Molecules, 2012 Aug 02;17(8):9207-19.
    PMID: 22858841 DOI: 10.3390/molecules17089207
    The inhibitory effect of active fractions of Eurycoma longifolia (E. longifolia) root, namely TAF355 and TAF401, were evaluated against Toxoplasma gondii (T. gondii). In our previous study, we demonstrated that T. gondii was susceptible to TAF355 and TAF401 with IC₅₀ values of 1.125 µg/mL and 1.375 µg/mL, respectively. Transmission (TEM) and scanning electron microscopy (SEM) observations were used to study the in situ antiparasitic activity at the IC₅₀ value. Clindamycin was used as positive control. SEM examination revealed cell wall alterations with formation of invaginations followed by completely collapsed cells compared to the normal T. gondii cells in response to the fractions. The main abnormality noted via TEM study was decreased cytoplasmic volume, leaving a state of structural disorganization within the cell cytoplasm and destruction of its organelles as early as 12 h of treatment, which indicated of rapid antiparasitic activity of the E. longifolia fractions. The significant antiparasitic activity shown by the TAF355 and TAF401 active fractions of E. longifolia suggests their potential as new anti-T. gondii agent candidates.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Nakisah MA, Ida Muryany MY, Fatimah H, Nor Fadilah R, Zalilawati MR, Khamsah S, et al.
    World J Microbiol Biotechnol, 2012 Mar;28(3):1237-44.
    PMID: 22805843 DOI: 10.1007/s11274-011-0927-8
    Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Malek SN, Lee GS, Hong SL, Yaacob H, Wahab NA, Faizal Weber JF, et al.
    Molecules, 2011 May 31;16(6):4539-48.
    PMID: 21629182 DOI: 10.3390/molecules16064539
    Investigations on the cytotoxic effects of the crude methanol and fractionated extracts (hexane, ethyl acetate) C. mangga against six human cancer cell lines, namely the hormone-dependent breast cell line (MCF-7), nasopharyngeal epidermoid cell line (KB), lung cell line (A549), cervical cell line (Ca Ski), colon cell lines (HCT 116 and HT-29), and one non-cancer human fibroblast cell line (MRC-5) were conducted using an in-vitro neutral red cytotoxicity assay. The crude methanol and fractionated extracts (hexane and ethyl acetate) displayed good cytotoxic effects against MCF-7, KB, A549, Ca Ski and HT-29 cell lines, but exerted no damage on the MRC-5 line. Chemical investigation from the hexane and ethyl acetate fractions resulted in the isolation of seven pure compounds, namely (E)-labda-8(17),12-dien-15,16-dial (1), (E)-15,16-bisnor-labda-8(17),11-dien-13-on (2), zerumin A (3), β-sitosterol, curcumin, demethoxycurcumin and bis-demethoxycurcumin. Compounds 1 and 3 exhibited high cytotoxic effects against all six selected cancer cell lines, while compounds 2 showed no anti-proliferative activity on the tested cell lines. Compound 1 also demonstrated strong cytotoxicity against the normal cell line MRC-5. This paper reports for the first time the cytotoxic activities of C. mangga extracts on KB, A549, Ca Ski, HT-29 and MRC-5, and the occurrence of compound 2 and 3 in C. mangga.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Acta Pol Pharm, 2011 May-Jun;68(3):343-8.
    PMID: 21648188
    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.
    Matched MeSH terms: Inhibitory Concentration 50
  13. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Inhibitory Concentration 50
  14. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Rahmat A, Kumar V, Fong LM, Endrini S, Sani HA
    Asia Pac J Clin Nutr, 2004;13(3):308-11.
    PMID: 15331345
    Antioxidants play an important role in inhibiting and scavenging radicals, thus providing protection to humans against infections and degenerative diseases. Literature shows that the antioxidant activity is high on herbal and vegetable plants. Realizing the fact, this research was carried out to determine total antioxidant activity and the potential anticancer properties in three types of selected local vegetable shoots such as Diplazium esculentum (paku shoot), Manihot utillissima (tapioca shoot) and Sauropous androgynus (cekur manis). The research was also done to determine the effect of boiling, on total antioxidant activity whereby samples of fresh shoots are compared with samples of boiled shoots. In every case, antioxidant activity is compared to alpha-tocopherol and two methods of extraction used are the organic and the aqueous methods. Besides that, two research methods used were the ferric thiocyanate (FTC) and thiobarbituric acid (TBA) with absorbance of 500nm and 532nm respectively. Oneway ANOVA test at P<0.05 determines significant differences between various samples. In the cytotoxic study, the ethanolic extract and several cell lines i.e. breast cancer (MDA-MB-231 and MCF-7), colon cancer (Caco-2), liver cancer (HepG2) and normal liver (Chang liver) were used. The IC(50)-value was determined by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The antioxidant study found that all the samples in both aqueous and organic extraction were significantly different. The total antioxidant activity values of aqueous extract in descending order are as follows: M. utilissima (fresh) >D. esculentum (fresh) >S.androgynus (fresh) > M.utilissima (boiled) > D. esculentum (boiled) > S.androgynus (boiled). It also was found that S.androgynus shoots ethanolic extract was able to inhibit the viability of the breast cancer cell lines, MDA-MB-231 with the IC50 value of 53.33 micrograms/ml. However, S.androgynus shoots and D. esculentum shoots ethanolic extracts did not inhibit the viability of MDA-MB-231 cell line. While, the tapioca shoot ethanolic extract was able to inhibit the viability of MCF-7 cell line with the IC(50) value of 52.49 micrograms/ml. S.androgynus shoots and D.esculentum shoots ethanolic extracts did not give an IC(50) value against the MCF-7 cell line. S.androgynus, tapioca and D.esculentum shoots ethanolic extracts did not show cytotoxic effect against the Caco-2 and HepG2. There was no IC(50)-value from any sample against Chang Liver cell line. In conclusion, the antioxidant activity of both fresh and boiled samples were higher than alpha-tocopherol, although fresh vegetable shoots were found to be higher in antioxidant activity compared to boiled shoots. This study also suggested that S.androgynus shoots and tapioca shoots have potential as an anticancer agent against certain breast tumours.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Perumal S, et al.
    Bioorg Med Chem, 2013 Apr 1;21(7):1696-707.
    PMID: 23454132 DOI: 10.1016/j.bmc.2013.01.066
    Three-component reaction of a series of 1-acryloyl-3,5-bisbenzylidenepiperidin-4-ones with isatin and L-proline in 1:1:1 and 1:2:2 molar ratios in methanol afforded, respectively the piperidone-grafted novel mono- and bisspiro heterocyclic hybrids comprising functionalized piperidine, pyrrolizine and oxindole ring systems in good yields. The in vitro evaluation of cholinesterase enzymes inhibitory activity of these cycloadducts disclosed that monospiripyrrolizines (8a-k), are more active with IC50 ranging from 3.36 to 20.07 μM than either the dipolarophiles (5a-k) or bisspiropyrrolizines (9a-k). The compounds, 8i and 8e with IC50 values of 3.36 and 3.50 μM, respectively showed the maximum inhibition of acethylcholinesterase (AChE) and butrylylcholinestrase (BuChE). Molecular modeling simulation, disclosed the binding interactions of the most active compounds to the active site residues of their respective enzymes. The docking results were in accordance with the IC50 values obtained from in vitro cholinesterase assay.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Patro G, Bhattamisra SK, Mohanty BK, Sahoo HB
    Pharmacognosy Res, 2016;8(1):22-8.
    PMID: 26941532 DOI: 10.4103/0974-8490.171099
    OBJECTIVE: Mimosa pudica Linn. (Mimosaceae) is traditionally used as a folk medicine to treat various ailments including convulsions, alopecia, diarrhea, dysentery, insomnia, tumor, wound healing, snake bite, etc., Here, the study was aimed to evaluate the antioxidant potential of M. pudica leaves extract against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (in vitro) and its modulatory effect on rat brain enzymes.
    MATERIALS AND METHODS: Total phenolic, flavonoid contents, and in vitro antioxidant potential against DPPH radical were evaluated from various extracts of M. pudica leaves. In addition, ethyl acetate extract of Mimosa pudica leaves (EAMP) in doses of 100, 200, and 400 mg/kg/day were administered orally for 7 consecutive days to albino rats and evaluated for the oxidative stress markers as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) from rat brain homogenate.
    RESULTS: The ethyl acetate extract showed the highest total phenolic content and total flavonoid content among other extracts of M. pudica leaves. The percentage inhibition and IC50 value of all the extracts were followed dose-dependency and found significant (P < 0.01) as compared to standard (ascorbic acid). The oxidative stress markers as SOD, CAT, and GSH were increased significantly (P < 0.01) at 200 and 400 mg/kg of EAMP treated animals and decreased significantly the TBARS level at 400 mg/kg of EAMP as compared to control group.
    CONCLUSION: These results revealed that the ethyl acetate extract of M. pudica exhibits both in vitro antioxidant activity against DPPH and in vivo antioxidant activity by modulating brain enzymes in the rat. This could be further correlated with its potential to neuroprotective activity due to the presence of flavonoids and phenolic contents in the extract.
    SUMMARY: Total phenolic, flavonoid contents and in-vitro antioxidant potential were evaluated from various extracts of M. pudica leaves. Again, in-vivo antioxidant evaluation from brain homogenate on oxidative stress markers as TBARS, SOD, CAT and GSH from rat was investigated. Our findings revealed that M. pudica possesses both in-vitro and in-vivo antioxidant activity due to presence of phenolics and flavonoids.
    KEYWORDS: 2; 2-diphenyl-1-picrylhydrazyl; Brain homogenate; Flavonoids; Mimosa pudica; Oxidative stress
    Matched MeSH terms: Inhibitory Concentration 50
  18. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Shehzad MT, Hameed A, Al-Rashida M, Imran A, Uroos M, Asari A, et al.
    Bioorg Chem, 2019 11;92:103244.
    PMID: 31541804 DOI: 10.1016/j.bioorg.2019.103244
    The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Rajedadram A, Pin KY, Ling SK, Yan SW, Looi ML
    J Zhejiang Univ Sci B, 2021 Feb 15;22(2):112-122.
    PMID: 33615752 DOI: 10.1631/jzus.B2000446
    This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 μg/mL) and PBL water extract (380 μg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 μmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links