RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.
CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.
Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.
Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.
Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.
MATERIALS AND METHODS: A total of 42 S. pyogenes isolates from invasive and non-invasive samples collected from two different tertiary hospitals were investigated for the distribution of virulence factors and their molecular epidemiology by emm and multilocus sequence typing methods. Detection of five virulence genes (speA, speB, speJ, ssa and sdaB) was performed using multiplex polymerase chain reaction (PCR) using the standard primers and established protocol. Phylogenetic tree branches were constructed from sequence analysis utilised by neighbour joining method generated from seven housekeeping genes using MEGA X software.
RESULTS: Multiplex PCR analysis revealed that sdaB/speF (78.6%) and speB (61.9%) were the predominant virulence genes. Regardless of the type of invasiveness, diverse distribution of emm types/subtypes was noted which comprised of 27 different emm types/subtypes. The predominant emm types/subtypes were emm63 and emm18 with each gene accounted for 11.8% whereas 12% for each gene was noted for emm28, emm97.4 and emm91. The MLST revealed that the main sequence type (ST) in invasive samples was ST402 (17.7%) while ST473 and ST318 (12% for each ST) were the major types in non-invasive samples. Out of 18 virulotypes, Virulotype A (five genes, 55.6%) and Virulotype B (two genes, 27.8%) were the major virulotypes found in this study. Phylogenetic analysis indicated the presence of seven different clusters of S. pyogenes. Interestingly, Cluster VI showed that selected emm/ST types such as emm71/ST318 (n=2), emm70.1/ST318 (n=1), emm44/ST31 (n=1) and emm18/ST442 (n=1) have clustered within a common group (Virulotype A) for both hospitals studied.
CONCLUSION: The present study showed that group A streptococcci (GAS) are genetically diverse and possess virulence genes regardless of their invasiveness. Majority of the GAS exhibited no restricted pattern of virulotypes except for a few distinct clusters. Therefore, it can be concluded that virulotyping is partially useful for characterising a heterogeneous population of GAS in hospitals.
METHODS: In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF) of patients presenting with tuberculous meningitis (TBM) in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb.
RESULTS: Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions) and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate)/PPE (proline-proline-glutamate), transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study.
DISCUSSION: The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB meningeal infection is more likely to be related to the expression of multiple virulence factors on interaction with host defences than to CNS tropism associated with specific genetic traits.
Materials and Methods: Samples were collected from the Tuberculosis Laboratory, Clinical Microbiology of Dr. Soetomo Hospital Surabaya Indonesia. DNA extraction used boiling extraction method and continued nucleic acid amplification using PCR techniques. Primer pairs used eccB5 SK.. The positivity of DNA specific revealed amplicon in 1592 bp. PCR product was sequenced by 1st Base (First BASE Laboratories Sdn Bhd, Selangor, Malaysia). The sequence analysis used Genetyx-Win version 10.0 (Genetyx Corporation, Tokyo, Japan).
Results: Total isolates of Mycobacterium spp. were 28 and those that showed positive MTBC were 24 isolates and 4 nontuberculosis mycobacteria (NTM) using immunochromatographic test (ICT). The amount of homology from MTBC using blast NCBI was 99%-100%. Two SNPs were found in position c.1277 which revealed replacement of amino acid in 426 of codon position.
Conclusion: The sequence of eccB5 gene of MTBC showed high significant homology, while proposed non-synoymous single nucleotide polymorphisms (nsSNP) may associated with clinical outcomes.