METHODOLOGY: The test was conducted for two different road conditions, tarmac and dirt roads. HAV exposure was measured using a Brüel & Kjær Type 3649 vibration analyzer, which is capable of recording HAV exposures from steering wheels. The data was analyzed using I-kaz Vibro to determine the HAV values in relation to varying speeds of a truck and to determine the degree of data scattering for HAV data signals.
RESULTS: Based on the results obtained, HAV experienced by drivers can be determined using the daily vibration exposure A(8), I-kaz Vibro coefficient (Ƶ(v)(∞)), and the I-kaz Vibro display. The I-kaz Vibro displays also showed greater scatterings, indicating that the values of Ƶ(v)(∞) and A(8) were increasing. Prediction of HAV exposure was done using the developed regression model and graphical representations of Ƶ(v)(∞). The results of the regression model showed that Ƶ(v)(∞) increased when the vehicle speed and HAV exposure increased.
DISCUSSION: For model validation, predicted and measured noise exposures were compared, and high coefficient of correlation (R(2)) values were obtained, indicating that good agreement was obtained between them. By using the developed regression model, we can easily predict HAV exposure from steering wheels for HAV exposure monitoring.
METHODS: A 3D-printed cardiac insert and Catphan 500 phantoms were scanned using CCTA protocols at 120 and 100 kVp tube voltages. All CT acquisitions were reconstructed using filtered back projection (FBP) and Adaptive Statistical Iterative Reconstruction (ASIR) algorithm at 40% and 60% strengths. Image quality characteristics such as image noise, signal-noise ratio (SNR), contrast-noise ratio (CNR), high spatial resolution, and low contrast resolution were analyzed.
RESULTS: There was no significant difference (P > 0.05) between 120 and 100 kVp measures for image noise for FBP vs ASIR 60% (16.6 ± 3.8 vs 16.7 ± 4.8), SNR of ASIR 40% vs ASIR 60% (27.3 ± 5.4 vs 26.4 ± 4.8), and CNR of FBP vs ASIR 40% (31.3 ± 3.9 vs 30.1 ± 4.3), respectively. Based on the Modulation Transfer Function (MTF) analysis, there was a minimal change of image quality for each tube voltage but increases when higher strengths of ASIR were used. The best measure of low contrast detectability was observed at ASIR 60% at 120 kVp.
CONCLUSIONS: Changing the IR strength has yielded different image quality noise characteristics. In this study, the use of 100 kVp and ASIR 60% yielded comparable image quality noise characteristics to the standard CCTA protocols using 120 kVp of ASIR 40%. A combination of 3D-printed and Catphan® 500 phantoms could be used to perform CT dose optimization protocols.
OBJECTIVE: To assess the auditory outcome of paediatric bilateral cochlear implant in Universiti Kebangsaan Malaysia.
MATERIALS AND METHODS: This was a cross-sectional and descriptive study single centre analysis. Categories of Auditory Performance (CAP-II) scale and Speech, Spatial and Qualities (SSQ) of Hearing questionnaire were used.
RESULTS: Forty-six patients were recruited. Majority of the children (30.4%) rated 7 and 23.9% scored perfectly (9) based on the CAP-II Scale. The least performing children were rated 5 (average). Children that were implanted sequentially within 24 months showed median CAP-II scale of 7. No significant correlation seen between CAP-II and the duration interval, use and age of 1st CI (p > .05). The speech domain of SSQ-P scale showed median value of 8 indicating good speech understanding. The spatial hearing domain had median value of 7, quality of hearing domain had median of 8. Significant correlation seen in hearing in noise with the duration of use of CI (p