Displaying all 12 publications

Abstract:
Sort:
  1. Abas R, Othman F, Thent ZC
    Oxid Med Cell Longev, 2014;2014:429060.
    PMID: 25371774 DOI: 10.1155/2014/429060
    In diabetes mellitus, cardiac fibrosis is characterized by increase in the deposition of collagen fibers. The present study aimed to observe the effect of Momordica charantia (MC) fruit extract on hyperglycaemia-induced cardiac fibrosis. Diabetes was induced in the male Sprague-Dawley rats with a single intravenous injection of streptozotocin (STZ). Following 4 weeks of STZ induction, the rats were subdivided (n = 6) into control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC), and diabetic group treated with 150 mg/kg of metformin (DM-Met). Administration of MC fruit extract (1.5 g/kg body weight) in diabetic rats for 28 days showed significant increase in the body weight and decrease in the fasting blood glucose level. Significant increase in cardiac tissues superoxide dismutase (SOD), glutathione contents (GSH), and catalase (CAT) was observed following MC treatment. Hydroxyproline content was significantly reduced and associated morphological damages reverted to normal. The decreased expression of type III and type IV collagens was observed under immunohistochemical staining. It is concluded that MC fruit extract possesses antihyperglycemic, antioxidative, and cardioprotective properties which may be beneficial in the treatment of diabetic cardiac fibrosis.
  2. Abas R, Othman F, Thent ZC
    EXCLI J, 2015;14:179-89.
    PMID: 26417358 DOI: 10.17179/excli2014-539
    Diabetes mellitus is one of the risk factors in the development of vascular complications. Decreased nitric oxide (NO) production and increased lipid peroxidation in diabetes mellitus are the dominant exaggerating factors. Mormodica charantia (MC) was proven to be useful in improving diabetes mellitus and its complications. In the present study, a total of 40 male Sprague-Dawley rats were used. Diabetes was induced by a single dose (50 mg/kg) of streptozotocin (STZ), intramuscularly. Following 4 weeks of STZ induction, the animals were equally divided into five groups (n = 8); Control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC) and diabetic group treated with metformin 150 g/kg (DM-Met). Oral administration of the MC fruit extract (1.5 g/kg) was continued for 28 days. DM-MC group showed a significant decrease (P < 0.05) in blood pressure, total cholesterol and triglyceride levels compared to the DM-Ctrl group. Aortic tissue NO level was significantly increased and malondialdehyde level was decreased in the DM-MC group. Immunohistochemical staining showed an increase in eNOS expression in the endothelial lining of the DM-MC group. Similarly, morphological deterioration of the aortic tissues was reverted to normal. In summary, treatment with the MC fruit extract exerted the significant vasculoprotective effect in the type 1 diabetic rat model.
  3. Abas R, Masrudin SS, Harun AM, Omar NS
    Malays J Med Sci, 2022 Dec;29(6):6-14.
    PMID: 36818899 DOI: 10.21315/mjms2022.29.6.2
    During the third week of human pregnancy, an embryo transforms from two germinal disc layers of hypoblast and epiblast to three germinal layers of endoderm, mesoderm and ectoderm. Gastrulation is a complex process that includes cellular mobility, morphogenesis and cell signalling, as well as chemical morphogenic gradients, transcription factors and differential gene expression. During gastrulation, many signalling channels coordinate individual cell actions in precise time and location. These channels control cell proliferation, shape, fate and migration to the correct sites. Subsequently, the anteroposterior (AP), dorsoventral (DV) and left-right (LR) body axes are formed before and during gastrulation via these signalling regulation signals. Hence, the anomalies in gastrulation caused by insults to certain molecular pathways manifest as a wide range of body axes-related disorders. This article outlines the formation of body axes during gastrulation and the anomalies as well as the clinical implications.
  4. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
  5. Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK
    Molecules, 2021 Aug 17;26(16).
    PMID: 34443563 DOI: 10.3390/molecules26164976
    Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
  6. Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR
    Front Pharmacol, 2019;10:1295.
    PMID: 31749703 DOI: 10.3389/fphar.2019.01295
    Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
  7. Woon CK, Hui WK, Abas R, Haron MH, Das S, Lin TS
    Curr Neuropharmacol, 2022;20(8):1498-1518.
    PMID: 34923947 DOI: 10.2174/1570159X20666211217163540
    Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material's bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicinebased approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.
  8. Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, et al.
    Environ Sci Pollut Res Int, 2022 Nov;29(54):81685-81702.
    PMID: 35737268 DOI: 10.1007/s11356-022-20858-y
    Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
  9. Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, et al.
    Front Pharmacol, 2023;14:1053680.
    PMID: 36959856 DOI: 10.3389/fphar.2023.1053680
    Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
  10. Adebayo IA, Gagman HA, Balogun WG, Adam MAA, Abas R, Hakeem KR, et al.
    PMID: 31239861 DOI: 10.1155/2019/6104574
    Despite the availability of anticancer drugs, breast cancer remains the most death-causing tumor-related disease in women. Hence, there is a need for discovery and development of efficient alternative drugs, and sources such as plants need to be explored. In this study, antioxidant capacities and inhibitory effects against MCF7 cells of the extracts of stem bark of three Nigerian medicinal plants (Detarium microcarpum, Guiera senegalensis, and Cassia siamea) were investigated. The D. microcarpum extracts had the highest antioxidant and antiproliferative effects, followed by that of G. senegalensis, and the C. siamea extracts had minimal effects. The IC50 values of the methanol and aqueous extracts from the three plants that inhibited the proliferation of MCF7 cells ranged from 78-> 500 μg/ml. Moreover, all the plant extracts but the aqueous extract of Cassia siamea exhibited antimetastatic action and induced apoptosis and cell cycle arrest in MCF7 cells. Liquid chromatography/time-of-flight/mass spectrometry profiling revealed that the five potent extracts contain many phenols and omega-6 fatty acids, and some of the identified compounds (isorhamnetin, eupatorin, alpinumisoflavone, procyanidin B3, syringin, and gallic acid) have been reported to have antiproliferative effects on cancer cells. Hence, the stem bark of these plants could be potential sources of antibreast cancer agents.
  11. Adebayo IA, Gagman HA, Balogun WG, Ahmed Adam MA, Abas R, Hakeem KR, et al.
    Evid Based Complement Alternat Med, 2019 09 08;2019:1529570.
    PMID: 31583008 DOI: 10.1155/2019/1529570
    [This corrects the article DOI: 10.1155/2019/6104574.].
  12. Alarabei AA, Abd Aziz NAL, Ab Razak NI, Abas R, Bahari H, Abdullah MA, et al.
    Adv Pharm Bull, 2024 Mar;14(1):105-119.
    PMID: 38585461 DOI: 10.34172/apb.2024.001
    Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links