Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Islam MA, Alam F, Wong KK
    Autoimmun Rev, 2017 May;16(5):512-522.
    PMID: 28279839 DOI: 10.1016/j.autrev.2017.03.005
    BACKGROUND: Antiphospholipid antibodies (aPLs) namely anticardiolipin (aCL) antibody, anti-β2-glycoprotein I (β2GPI) antibody and lupus anticoagulant (LA) are autoantibodies produced against anionic phospholipids and proteins on plasma membranes. Migraine is a primary headache disorder which has growing evidences of autoimmune-mediated pathogenesis and previous studies suggested the presence of aPLs in migraine patients.

    AIMS: The aim of this study was to evaluate the comorbid association between aPLs (aCL, anti-β2GPI and LA) and migraine compared to healthy controls.

    METHODS: Studies were searched through PubMed, ISI Web of Science and Google Scholar databases without restricting the languages and year (up to October 2016) and were selected based on the inclusion criteria. Two authors independently extracted data from the included studies. All analyses were conducted by using random effects model to calculate the odds ratio (OR) and 95% confidence interval (CI). Quality assessment was carried out by using the modified Newcastle-Ottawa Scale (NOS). Publication bias was evaluated via visualization of funnel plots, Begg's and Egger's tests.

    RESULTS: The database searches produced 1995 articles, 13 of which were selected (912 migraineurs and 822 healthy controls). 8.59%, 15.21% and 4.11% of the migraineurs exhibited aCL, anti-β2GPI and LA which was 4.83, 1.63 and 3.03 times higher, respectively, than healthy controls. A significant presence of aCL (OR: 3.55, 95% CI: 1.59-7.95; p=0.002) or anti-β2GPI antibodies (OR: 2.02, 95% CI: 1.20-3.42; p=0.008) was observed in migraine patients, however, LA was not significantly associated (OR: 2.02, 95% CI: 0.50-8.37; p=0.320). Majority of the studies (n=10 of 13) demonstrated NOS score of 7 or above and no significant publication bias was observed.

    CONCLUSION: Migraine might be an autoimmune-associated neurologic disorder. The presence of aCL or anti-β2GPI antibodies was significant in migraine patients compared to healthy controls, suggesting an involvement of these autoantibodies in migraine attack.
  2. Islam MA, Alam F, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(28):4451-69.
    PMID: 27229722
    Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by a persistently high titer of antiphospholipid antibodies (aPLs). In addition to pregnancy morbidity, arterial and/or venous thrombosis is another clinical feature of APS. Regardless of the type of APS, the thrombi formed by the induction of aPLs can lead to deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke and gangrene. Although the concept of APS was introduced approximately 32 years ago, its thrombogenic pathophysiology is still unclear. Therefore, patients are treated with anticoagulant and/or antiplatelet regimens just as in other thrombotic disorders even though the thrombotic pathophysiology is mainly aPLs-mediated. In this review, we provided an update of the cellular, auto-immune and genetic factors known to play important roles in the generation of thrombi. Current successful regimens are also outlined along with potential emerging treatment strategies that may lead to the optimum management of thrombotic APS patients.
  3. Honar Pajooh H, Rashid M, Alam F, Demidenko S
    Sensors (Basel), 2021 Jan 24;21(3).
    PMID: 33498860 DOI: 10.3390/s21030772
    The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.
  4. Honar Pajooh H, Rashid M, Alam F, Demidenko S
    Sensors (Basel), 2021 Jan 07;21(2).
    PMID: 33430274 DOI: 10.3390/s21020359
    Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems' scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.
  5. Alam F, Islam MA, Kamal MA, Gan SH
    Curr Med Chem, 2018;25(39):5395-5431.
    PMID: 27528060 DOI: 10.2174/0929867323666160813222436
    Over the years, natural products have shown success as antidiabetics in in vitro, in vivo studies and clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs, and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.
  6. Alam F, Islam MA, Khalil MI, Gan SH
    Curr Pharm Des, 2016;22(20):3034-49.
    PMID: 26951104 DOI: 10.2174/1381612822666160307145801
    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.
  7. Alam F, Islam MA, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(28):4430-42.
    PMID: 27229721 DOI: 10.2174/1381612822666160527160236
    Although type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are two independent diseases, evidences from epidemiological, pathophysiological and animal studies have indicated a close pathophysiological relationship between these diseases. Due to the pathophysiological similarity of T2DM and AD, which includes insulin resistance and deficiency, protein aggregation, oxidative stress, inflammation, autophagocytosis and advanced glycation end products; AD is often referred to as "type 3 diabetes". In addition to the targeted regimens usually used for treating T2DM and AD individually, currently, anti-diabetic drugs are successfully used to reduce the cognitive decline in AD patients. Therefore, if a common pathophysiology of T2DM and AD could be clearly determined, both diseases could be managed more efficiently, possibly by shared pharmacotherapy in addition to understanding the broader spectrum of preventive strategies. The aim of this review is to discuss the pathophysiological bridge between T2DM and AD to lay the foundation for the future treatment strategies in the management of both diseases.
  8. Alam F, Islam MA, Gan SH, Khalil MI
    PMID: 25386217 DOI: 10.1155/2014/169130
    Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an "all in one" remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey's antibacterial activity on diabetic wound-related microorganisms and honey's clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims.
  9. Solayman M, Ali Y, Alam F, Islam MA, Alam N, Khalil MI, et al.
    Curr Pharm Des, 2016;22(5):549-65.
    PMID: 26601968
    Diabetes mellitus (DM) is one of the most common endocrine metabolic disorders. In addition to exercise and diet, oral anti-diabetic drugs have been used as a part of the management strategy worldwide. Unfortunately, none of the conventional anti-diabetic drugs are without side effects, and these drugs pose an economic burden. Therefore, the investigation of novel anti-diabetic regimens is a major challenge for researchers, in which nature has been the primary resource for the discovery of potential therapeutics. Many plants have been shown to act as anti-diabetic agents, in which the main active constituents are believed to be polyphenols. Natural products containing high polyphenol levels can control carbohydrate metabolism by various mechanisms, such as protecting and restoring beta-cell integrity, enhancing insulin releasing activity, and increasing cellular glucose uptake. Blackberries, red grapes, apricots, eggplant and popular drinks such as coffee, cocoa and green tea are all rich in polyphenols, which may dampen insulin resistance and be natural alternatives in the treatment of diabetes. Therefore, the aim of this review is to report on the available anti-diabetic polyphenols (medicinal plants, fruits and vegetables), their mechanisms in the various pathways of DM and their correlations with DM. Additionally, this review emphasizes the types of polyphenols that could be potential future resources in the treatment of DM via either novel regimens or as supplementary agents.
  10. Islam MA, Alam F, Khalil MI, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(20):2926-46.
    PMID: 26951101
    Globally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy.
  11. Alam F, Islam MA, Gan SH, Mohamed M, Sasongko TH
    Curr Pharm Des, 2016;22(28):4398-419.
    PMID: 27229720
    DNA methylation, a major regulator of epigenetic modifications has been shown to alter the expression of genes that are involved in aspects of glucose metabolism such as glucose intolerance, insulin resistance, β-cell dysfunction and other conditions, and it ultimately leads to the pathogenesis of type 2 diabetes mellitus (T2DM). Current evidences indicate an association of DNA methylation with T2DM. This review provides an overview of how various factors play crucial roles in T2DM pathogenesis and how DNA methylation interacts with these factors. Additionally, an update on current techniques of DNA methylation analysis with their pros and cons is provided as a basis for the adoption of suitable techniques in future DNA methylation research towards better management of T2DM. To elucidate the mechanistic relationship between vital environmental factors and the development of T2DM, a better understanding of the changes in gene expression associated with DNA methylation at the molecular level is still needed.
  12. Solayman M, Islam MA, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Drug Metab, 2017;18(1):50-61.
    PMID: 27396919 DOI: 10.2174/1389200217666160709204826
    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents.
  13. Islam MA, Alam F, Cavestro C, Calcii C, Sasongko TH, Levy RA, et al.
    Autoimmun Rev, 2018 Aug;17(8):755-767.
    PMID: 29885542 DOI: 10.1016/j.autrev.2018.01.025
    BACKGROUND: Autoimmunity is believed to play an important causative role in the pathogenesis of epilepsy. There are evidences for the presence of autoantibodies in patients with epilepsy. To date, many studies have assessed the presence of antiphospholipid antibodies (aPLs) in epilepsy patients, though the relationship has been inconclusive.

    AIMS: The aim of this systematic review and meta-analysis was to evaluate the presence of aPLs in epileptic patients as compared to healthy controls.

    METHODS: Five electronic databases (PubMed, Web of Science, Embase, Scopus and Google Scholar) were searched systematically. Study-specific odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using random-effects model. Quality assessment was carried out by using the modified 9-star Newcastle-Ottawa Scale (NOS). L'Abbé plots were generated to visually inspect heterogeneity while publication bias was evaluated via visualization of contour- enhanced funnel plots, and Begg's and Egger's tests.

    RESULTS: Based on the inclusion criteria, 14 studies were selected involving 1248 epilepsy patients and 800 healthy controls. The majority of epilepsy was categorised as generalised or partial and none had comorbidity with autoimmune diseases. Significant presence of both anticardiolipin (aCL) antibodies (OR: 5.16, 95% CI: 3.21-8.28, p 
  14. Islam MA, Alam F, Wong KK, Kamal MA, Gan SH
    Curr Vasc Pharmacol, 2017;15(4):313-326.
    PMID: 28056758 DOI: 10.2174/1570161115666170105120931
    Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis and/or pregnancy morbidity with persistent levels of antiphospholipid antibodies (aPLs). The development of thrombosis in APS is mediated by aPLs and contributes to the high mortality rate in APS patients. However, although APS has been reported for more than 30 years, there has been no optimal regimen for its prevention or for the management of thrombosis, mainly because the mainstay treatment strategies for managing APS are not targeted towards aPL-mediated thrombotic pathophysiology. Instead, the treatments commonly used are aimed at general thrombotic disorders. Warfarin is the most commonly used vitamin K antagonist (VKA), in addition to anti-platelet medications, such as aspirin and clopidogrel. Over the last decade, novel non-VKA oral anticoagulants, including rivaroxaban, apixaban and dabigatran, as well as immunomodulatory agents, such as rituximab, eculizumab, hydroxychloroquine, statins and sirolimus, have also been used. In this review, we discuss the current treatment strategies and future treatment outlook for thrombotic APS.
  15. Islam MA, Khandker SS, Alam F, Khalil MI, Kamal MA, Gan SH
    Curr Top Med Chem, 2017;17(12):1408-1428.
    PMID: 28049401 DOI: 10.2174/1568026617666170103163054
    Alzheimer's disease (AD), which largely affects the elderly, has become a global burden. Patients with AD have both short- and long-term memory impairments. The neuronal loss in AD occurs due to abnormally folded amyloid beta proteins and aggregation of hyperphosphorylated tau proteins in the brain. Eventually, amyloid plaques and neurofibrillary tangles are formed, which subsequently disintegrate the neuronal transport system. There are several factors which are involved in AD pathogenesis, including oxidative stress, inflammation and the presence of metal ions. The modern therapies utilized for AD treatment have many adverse effects, driving the quest for more safe and effective medications. Many dietary components, including different types of fruits, vegetables, spices, and marine products as well as a Mediterranean diet, are a good source of antioxidants and have anti-inflammatory properties, with many showing substantial potential against AD pathogenesis. In this review, we discuss the potential of these foods for treating AD and opportunities for developing disease-targeted drugs from active compounds extracted from natural dietary products.
  16. Asiful Islam M, Alam F, Kamal MA, Gan SH, Wong KK, Sasongko TH
    Curr Pharm Des, 2017;23(11):1598-1609.
    PMID: 27875971 DOI: 10.2174/1381612823666161122142950
    Nonsense mutations contribute to approximately 10-30% of the total human inherited diseases via disruption of protein translation. If any of the three termination codons (UGA, UAG and UAA) emerges prematurely [known as premature termination codon (PTC)] before the natural canonical stop codon, truncated nonfunctional proteins or proteins with deleterious loss or gain-of-function activities are synthesized, followed by the development of nonsense mutation-mediated diseases. In the past decade, PTC-associated diseases captured much attention in biomedical research, especially as molecular therapeutic targets via nonsense suppression (i.e. translational readthrough) regimens. In this review, we highlighted different treatment strategies of PTC targeting readthrough therapeutics including the use of aminoglycosides, ataluren (formerly known as PTC124), suppressor tRNAs, nonsense-mediated mRNA decay, pseudouridylation and CRISPR/Cas9 system to treat PTC-mediated diseases. In addition, as thrombotic disorders are a group of disease with major burdens worldwide, 19 potential genes containing a total of 705 PTCs that cause 21 thrombotic disorders have been listed based on the data reanalysis from the 'GeneCards® - Human Gene Database' and 'Human Gene Mutation Database' (HGMD®). These PTC-containing genes can be potential targets amenable for different readthrough therapeutic strategies in the future.
  17. Islam MA, Alam F, Solayman M, Khalil MI, Kamal MA, Gan SH
    Oxid Med Cell Longev, 2016;2016:5137431.
    PMID: 27721914
    Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.
  18. Alam F, Islam MA, Mohamed M, Ahmad I, Kamal MA, Donnelly R, et al.
    Sci Rep, 2019 03 29;9(1):5389.
    PMID: 30926892 DOI: 10.1038/s41598-019-41854-2
    Pioglitazone, the only thiazolidinedione drug in clinical practice is under scrutiny due to reported adverse effects, it's unique insulin sensitising action provides rationale to remain as a therapeutic option for managing type 2 diabetes mellitus (T2DM). We conducted a systematic review and meta-analysis comparing pioglitazone monotherapy with monotherapies of other oral antidiabetic drugs for assessing its efficacy and safety in T2DM patients. Mean changes in glycated haemoglobin (HbA1c), and mean changes in fasting blood sugar (FBS) level, body weight (BW) and homeostasis model assessment-insulin resistance (HOMA-IR) were primary and secondary outcomes, respectively. Safety outcomes were changes in lipid parameters, blood pressure and incidences of adverse events. Metafor package of R software and RevMan software based on random-effects model were used for analyses. We included 16 randomised controlled trials. Pioglitazone monotherapy showed equivalent efficacy as comparators in reducing HbA1c by 0.05% (95% CI: -0.21 to 0.11) and greater efficacy in reducing FBS level by 0.24 mmol/l (95% CI: -0.48 to -0.01). Pioglitazone showed similar efficacy as comparators in reducing HOMA-IR (WMD: 0.05, 95% CI: -0.49 to 0.59) and increasing high-density lipoprotein level (WMD: 0.02 mmol/l, 95% CI: -0.06 to 0.10). Improved blood pressure (WMD: -1.05 mmHg, 95% CI: -4.29 to 2.19) and triglycerides level (WMD: -0.71 mmol/l, 95% CI: -1.70 to 0.28) were also observed with pioglitazone monotherapy. There was a significant association of pioglitazone with increased BW (WMD: 2.06 kg, 95% CI: 1.11 to 3.01) and risk of oedema (RR: 2.21, 95% CI: 1.48 to 3.31), though the risk of hypoglycaemia was absolutely lower (RR: 0.51, 95% CI: 0.33 to 0.80). Meta-analysis supported pioglitazone as an effective treatment option for T2DM patients to ameliorate hyperglycaemia, adverse lipid metabolism and blood pressure. Pioglitazone is suggested to prescribe following individual patient's needs. It can be a choice of drug for insulin resistant T2DM patients having dyslipidaemia, hypertension or history of cardiovascular disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links