A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor.
The microwave-assisted three-component reactions of 3,5-bis(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones, acenaphthenequinone and cyclic α-amino acids in an ionic liquid, 1-butyl-3-methylimidazolium bromide, occurred through a domino sequence affording structurally intriguing diazaheptacyclic cage-like compounds in excellent yields.
A series of novel dimethoxyindanone embedded spiropyrrolidines were synthesized in ionic liquid, [bmim]Br and were evaluated for their inhibitory activities towards cholinesterases. Among the spiropyrrolidines, compound 4f exhibited the most potent activity with an IC50 value of 1.57 µM against acethylcholinesterase (AChE). Molecular docking simulation for the most active compound was employed with the aim of disclosing its binding mechanism to the active site of AChE receptor.
The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.
This study investigates the use of Excoecaria agallocha leaves as a bio-template for the intercalation of Selenium nanoparticles (SeNPs). The synthesized SeNPs were characterized using techniques like SEM-EDX, TEM/HR-TEM, and XRD spectroscopic studies. The study found that SeNPs showed maximum cleaning ability at a dosage of 50 μl/mL, with 95% inhibition of DPPH radicals. However, cellular absorption was limited to 55% at concentrations of 300 μg/L over a 72-h period. The synthesized SeNPs also demonstrated a strong cytotoxic effect on MCF-7 breast cancer cell lines, indicating their potential as anti-cancer agents. Further research is needed to fully explore the potential of these novel nanocomposites.
A series of hitherto unreported anthracene-embedded dispirooxindoles has been synthesized via a one-pot three-component 1,3-dipolar cycloaddition reaction of an azomethine ylide, generated in situ from the reaction of isatin and sarcosine to 10-benzylideneanthracen-9(10H)-one as a dipolarophile in 1-butyl-3-methylimidazolium bromide([bmim]Br), an ionic liquid. This reaction proceeded regio- and diastereoselectively, in good to excellent yields.
A series of twelve dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H(37)Rv and INH resistant M. tuberculosis strains using agar dilution method, four of them showed good activity with MIC of less than 1 μM. Compound 4'-[5-(4-fluorophenyl)pyridin-3-yl]-1'-methyldispiro[indan-2,2' pyrrolidine-3',2″-indan]-1,3,1″-trione (4b) was found to be the most active with MIC of 0.1215 and 5.121 μM, respectively.
Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.
Incessant utilization of chemical fertilizers leads to the accumulation of minerals in the soil, rendering them unavailable to plants. Unaware of the mineral reserves present in the soil, farming communities employ chemical fertilizers once during each cultivation, a practice that causes elevated levels of insoluble minerals within the soil. The use of biofertilizers on the other hand, reduces the impact of chemical fertilizers through the action of microorganisms in the product, which dissolves minerals and makes them readily available for plant uptake, helping to create a sustainable environment for continuous agricultural production. In the current investigation, a field trial employing Arachis hypogaea L was conducted to evaluate the ability of Pseudomonas aeruginosa to enhance plant growth and development by solubilizing minerals present in the soil (such as zinc and phosphorus). A Randomized Complete Block Design (RCBD) included five different treatments as T1: Un inoculated Control; T2: Seeds treated with a liquid formulation of P. aeruginosa; T3: Seeds treated with a liquid formulation of P. aeruginosa and the soil amended with organic manure (farmyard); T4: Soil amended with organic manure (farmyard) alone; T5: Seeds treated with lignite (solid) based formulation of P. aeruginosa were used for the study. Efficacy was determined based on the plant's morphological characters and mineral contents (Zn and P) of plants and soil. Survival of P. aeruginosa in the field was validated using Antibiotic Intrinsic patterns (AIP). The results indicated that the combination treatment of P. aeruginosa liquid formulation and organic fertilizer (farmyard) (T3) produced the highest biometric parameters and mineral (Zn and P) content of the groundnut plants and the soil. This outcome is likely attributed to the mineral solubilizing capability of P. aeruginosa. Furthermore, the presence of farmyard manure increased the metabolic activity of P. aeruginosa by inducing its heterotrophic activity, leading to higher mineral content in T3 soil compared to other soil treatments. The AIP data confirmed the presence of the applied liquid inoculant by exhibiting a similar intrinsic pattern between the in vitro isolate and the isolate obtained from the fields. In summary, the Zn and P solubilization ability of P. aeruginosa facilitates the conversion of soil-unavailable mineral form into a form accessible to plants. It further proposes the utilization of the liquid formulation of P. aeruginosa as a viable solution to mitigate the challenges linked to solid-based biofertilizers and the reliance on mineral-based chemical fertilizers.
A number of novel spiro-pyrrolidines/pyrrolizines derivatives were synthesized through [3+2]-cycloaddition of azomethine ylides with 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones 2a-n. Azomethine ylides were generated in situ from the reaction of 1H-indole-2,3-dione (isatin, 3) with N-methylglycine (sarcosine), phenylglycine, or proline. All compounds (50 μM) were evaluated for their antiproliferative activity against human breast carcinoma (MDA-MB-231), leukemia lymphoblastic (CCRF-CEM), and ovarian carcinoma (SK-OV-3) cells. N-α-Phenyl substituted spiro-pyrrolidine derivatives (5a-n) showed higher antiproliferative activity in MDA-MB-231 than other cancer cell lines. Among spiro-pyrrolizines 6a-n, a number of derivatives including 6a-c and 6i-m showed a comparable activity with doxorubicin in all three cell lines. Among all compounds in three classes, 6a, 6b, and 6m, were found to be the most potent derivatives showing 64%, 87%, and 74% antiproliferative activity in MDA-MB-231, SK-OV-3, and CCRF-CEM cells, respectively. Compound 6b showed an IC50 value of 3.6 mM in CCRF-CEM cells. These data suggest the potential antiproliferative activity of spiro-pyrrolidines/pyrrolizines.
In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.