Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Ansar S, Iqbal M
    Toxicol Ind Health, 2015 Nov;31(11):1008-14.
    PMID: 23863956 DOI: 10.1177/0748233713493824
    Ascorbic acid (AA) is a naturally occurring phenolic compound with antioxidant properties used in food, cosmetics, and pharmaceutical products. In this study, the effect of AA on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats has been examined. Fe-NTA alone enhances ornithine decarboxylase activity to 4.5-fold and tritiated thymidine incorporation in DNA to 3.6-fold in livers compared with the corresponding saline-treated controls. The enhanced ornithine decarboxylase activity and DNA synthesis showed a reduction to 3.02- and 1.88-fold, respectively, at a higher dose of 2 mg AA per day per animal, compared with the Fe-NTA-treated groups. Fe-NTA treatment also enhanced the hepatic microsomal lipid peroxidation to 1.7-fold compared to saline-treated controls. These changes were reversed significantly in animals receiving pretreatment of AA. The present data shows that AA can reciprocate the toxic effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant-induced tissue injury and hepatotoxicity in rats.
  2. Ansar S, Iqbal M
    Toxicol Ind Health, 2015 Nov;31(11):967-73.
    PMID: 26499990 DOI: 10.1177/0748233714554409
    Ferric nitrilotriacetate (Fe-NTA) is a known renal carcinogen and has been shown to adversely induce oxidative stress and tissue toxicity after both acute and chronic exposure. Present studies were designed to study the hepatoprotective and antioxidant potential of butylated hydroxyanisole (BHA), a phenolic antioxidant used in foods on ferric nitrilotriacetate (Fe-NTA) induced hepatotoxicity in rats. Male albino rats of Wistar strain (4-6 weeks old) weighing 125-150 g were used in this study. Animals were given a single dose of Fe-NTA (9 mg/kg body weight, intraperitoneal) after a week's treatment with BHA. BHA was administered orally once daily for 7 days at doses of 1 and 2 mg/animal/day. The hepatoprotective activity was assessed using various biochemical parameters as serum transaminases (alanine transaminase (ALT), aspartate transaminase (AST)) and lactate dehydrogenase (LDH). Fe-NTA treatment increased ALT, AST, and LDH levels significantly when compared to the corresponding saline-treated group (p < 0.001). Fe-NTA also depleted the levels of glutathione and the activities of antioxidant enzymes namely glutathione reductase and glutathione-S-tranferase (p < 0.05). Pretreatment with BHA significantly decreased ALT, AST and LDH levels in a dose-dependent manner (p < 0.05). BHA also increased antioxidant enzymes level and decreased lipid peroxidation and hydrogen peroxide generation to 1.3-1.5-fold as compared to Fe-NTA-treated group. The results show the strong hepatoprotective activity of BHA which could be due to its potent antioxidant effects.
  3. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Dec;35(12):1305-1311.
    PMID: 26825963
    The present study was undertaken to evaluate the effect of diallylsulphide (DAS) against mercuric chloride (HgCl2)-induced oxidative stress in rat livers. Rats were randomly divided into four groups of six rats each and exposed to HgCl2 (50 mg/kg/body weight (b.w.)) intraperitoneally and/or DAS (200 mg/kg/b.w.) by gavage. HgCl2 administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, treatment with DAS markedly attenuated HgCl2-induced biochemical alterations in liver and serum transaminases (AST and ALT; p < 0.05). Further, biochemical results were confirmed by histopathological changes as compared to HgCl2-intoxicated rats. Histopathology of liver also showed that administration of DAS significantly reduced the damage generated by HgCl2 The present study suggests that DAS shows antioxidant activity and plays a protective role against mercury-induced oxidative damage in the rat livers.
  4. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Apr;35(4):448-53.
    PMID: 26078281 DOI: 10.1177/0960327115591378
    The present study was aimed to study protective effect of butylated hydroxyanisole (BHA), a phenolic antioxidant used in foods on ferric nitrilotriacetate (Fe-NTA)-induced nephrotoxicity. Male albino rats of Wistar strain (4-6 weeks old) weighing 125-150 g were used in this study. Animals were given a single dose of Fe-NTA (9 mg kg(-1) body weight) after treatment with BHA (1 and 2 mg animal(-1) day(-1)). Fe-NTA treatment enhanced ornithine decarboxylase (ODC) activity to 5.3-fold, and [(3)H]-thymidine incorporation in DNA to 2.5-fold in kidney compared with the corresponding saline-treated control, whereas glutathione (GSH) levels and the activities of antioxidant enzymes decreased to a range of 2- to 2.5-fold in kidney. These changes were reversed significantly in animals receiving a pretreatment of BHA. The enhanced ODC activity and DNA synthesis showed a reduction to 2.12-fold and 1.15-fold, respectively, at a higher dose of 2 mg BHA day(-1) animal(-1), compared with the Fe-NTA-treated groups. Pretreatment with BHA prior to Fe-NTA treatment increased GSH and the activities of antioxidant enzymes to a range of 1.5- to 2-fold in kidney. The results indicate that BHA suppresses Fe-NTA-induced nephrotoxicity in male Wistar rats.
  5. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Mar;35(3):259-66.
    PMID: 25904316 DOI: 10.1177/0960327115583362
    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats.
  6. Ansar S, Iqbal M, AlJameil N
    Hum Exp Toxicol, 2014 Dec;33(12):1209-16.
    PMID: 24596035 DOI: 10.1177/0960327114524237
    Ferric nitrilotriacetate (Fe-NTA) induces tissue necrosis as a result of lipid peroxidation (LPO) and oxidative damage that leads to high incidence of renal carcinomas. The present study was undertaken to evaluate the effect of diallyl sulphide (DAS) against Fe-NTA-induced nephrotoxicity. A total of 30 healthy male rats were randomly divided into 5 groups of 6 rats each: (1) control, (2) DAS (200 mg kg(-1)), (3) Fe-NTA (9 g Fe kg(-1)), (4) DAS (100 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)) and (5) DAS (200 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)). Fe-NTA + DAS-treated groups were given DAS for a period of 1 week before Fe-NTA administration. The intraperitoneal administration of Fe-NTA enhanced blood urea nitrogen and creatinine levels with reduction in levels of antioxidant enzymes. However, significant restoration of depleted renal glutathione and its dependent enzymes (glutathione reductase and glutathione-S-transferase) was observed in DAS pretreated groups. DAS also attenuated Fe-NTA-induced increase in LPO, hydrogen peroxide generation and protein carbonyl formation (p < 0.05). The results indicate that DAS may be beneficial in ameliorating the Fe-NTA-induced renal oxidative damage in rats.
  7. Latifah Saiful Yazan, Siti Nabilahuda Mohd Azlan, Fatin Hannani Zakarial Ansar, Banulata Gopalsamy
    MyJurnal
    Introduction: Thymoquinone (TQ), a bioactive compound from Nigella sativa is known for its various medicinal properties. Due to the low solubility of TQ, nanostructured lipid carrier (NLC) has been used as a delivery system to improve its efficacy. Nevertheless, the effect of TQ-NLC when administered intravenously is unclear. This study investigated the acute toxicity profile of intravenous administration of TQ-NLC in an in vivo model. Methods: Twelve female Sprague dawley rats were assigned randomly into two groups (n=6); a control and a treatment group that received normal saline and 25 mg/kg TQ-NLC, respectively, via intravenous injection. The rats were observed for 14 days for any alterations to their usual physical conditions such as behaviour and mortality, body weight, food intake, organ-to-body weight ratio, and haematological, biochemical and histopathological profile. Results: There were no significant changes (p>0.05) in the body weight, food intake, organ-to-body weight ratio, and haematological, bio- chemical and histopathological profile between TQ-NLC treatment and the control group. However, inflammation was observed at the site of injection on the rat’s tail. Conclusion: Intravenous administration of TQ-NLC (25 mg/kg) did not exert acute toxic effect in female Sprague dawley rats. The data can be used as a basis to further develop TQ- NLC as a potential therapeutic drug.
  8. Ansar A, Ahmad Yahaya AN, Kamil AA, Sabani R, Murad M, Aisyah S
    Heliyon, 2022 Oct;8(10):e11060.
    PMID: 36281398 DOI: 10.1016/j.heliyon.2022.e11060
    Spray dryer had long been used to dry liquid materials and produce dry crystalline products. However, the drying of the bittern to produce quality salt crystals has not been widely published. Therefore, the purpose of this study was to examine the effect of drying conditions of the bittern using a spray dryer to produce salt with a high natrium chloride (NaCl) content. Drying was carried out in the hot air temperature (105-125 °C), drying air flow rate (25-45 ml/min), feed flow rate (20-30 ml/min), and concentration of maltodextrin (10-30%). The parameters were observed water content, NaCl content, yield, and mean particle diameter size (MPDS). The results showed that the inlet air temperature of 125 °C can significantly reduce the water content faster and produce higher NaCl levels than the inlet air temperature of 105 °C. The salt crystals produced at higher maltodextrin concentrations have lower water content and high NaCl content. The best-operating conditions are at a hot air temperature of 125 °C, a drying airflow rate of 45 m/s, and a maltodextrin concentration of 25% because it produces salt crystals with high NaCl content. Overall, these results indicate that the bittern can be dried using a spray dryer with potential NaCl content as a raw material for the pharmaceutical industry.
  9. Zaoui Y, Ramli Y, Taoufik J, Mague JT, Jotani MM, Tiekink ERT, et al.
    Acta Crystallogr E Crystallogr Commun, 2019 Mar 01;75(Pt 3):392-396.
    PMID: 30867956 DOI: 10.1107/S205698901900241X
    The title compound, C16H18N2O3, is constructed about a central oxopyridazinyl ring (r.m.s. deviation = 0.0047 Å), which is connected to an ethyl-acetate group at the N atom closest to the carbonyl group, and benzyl and methyl groups second furthest and furthest from the carbonyl group, respectively. An approximately orthogonal relationship exists between the oxopyridazinyl ring and the best plane through the ethyl-acetate group [dihedral angle = 77.48 (3)°]; the latter lies to one side of the central plane [the Nr-Nr-Cm-Cc (r = ring, m = methyl-ene, c = carbon-yl) torsion angle being 104.34 (9)°]. In the crystal, both H atoms of the N-bound methyl-ene group form methyl-ene-C-H⋯O(ring carbon-yl) or N(pyridazin-yl) inter-actions, resulting in the formation of a supra-molecular tape along the a-axis direction. The tapes are assembled into a three-dimensional architecture by methyl- and phenyl-C-H⋯O(ring carbon-yl) and phenyl-C-H⋯O(ester carbon-yl) inter-actions. The analysis of the calculated Hirshfeld surface indicates the dominance of H⋯H contacts to the overall surface (i.e. 52.2%). Reflecting other identified points of contact between mol-ecules noted above, O⋯H/H⋯O (23.3%), C⋯H/H⋯C (14.7%) and N⋯H/H⋯N (6.6%) contacts also make significant contributions to the surface.
  10. Alexander HR, Syed Alwi SS, Yazan LS, Zakarial Ansar FH, Ong YS
    PMID: 31915456 DOI: 10.1155/2019/9725738
    Wound healing is a regulated biological event that involves several processes including infiltrating leukocyte subtypes and resident cells. Impaired wound healing is one of the major problems in diabetic patients due to the abnormal physiological changes of tissues and cells in major processes. Thymoquinone, a bioactive compound found in Nigella sativa has been demonstrated to possess antidiabetic, anti-inflammatory, and antioxidant effects. Today, the rapidly progressing nanotechnology sets a new alternative carrier to enhance and favour the speed of healing process. In order to overcome its low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aimed to determine the effect of TQ-NLC and TQ on cell proliferation and migration, mode of cell death, and the antioxidant levels in normal and diabetic cell models, 3T3 and 3T3-L1. Cytotoxicity of TQ-NLC and TQ was determined by MTT assay. The IC10 values obtained for 3T3-L1 treated with TQ-NLC and TQ for 24 hours were 4.7 ± 3.3 and 5.3 ± 0.6 μM, respectively. As for 3T3, the IC10 values obtained for TQ-NLC and TQ at 24 hours were 4.3 ± 0.17 and 3.9 ± 2.05 μM, respectively. TQ-NLC was observed to increase the number of 3T3 and 3T3-L1 healthy cells (87-95%) and gradually decrease early apoptotic cells in time- and dose-dependant manner compared with TQ. In the proliferation and migration assay, 3T3-L1 treated with TQ-NLC showed higher proliferation and migration rate (p < 0.05) compared with TQ. TQ-NLC also acted as an antioxidant by reducing the ROS levels in both cells after injury at concentration as low as 3 μM. Thus, this study demonstrated that TQ-NLC has better proliferation and migration as well as antioxidant effect compared with TQ especially on 3T3-L1 which confirms its ability as a good antidiabetic and antioxidant agent.
  11. Haron AS, Syed Alwi SS, Saiful Yazan L, Abd Razak R, Ong YS, Zakarial Ansar FH, et al.
    PMID: 30186351 DOI: 10.1155/2018/1549805
    Thymoquinone (TQ), a bioactive compound found in Nigella sativa, cannot be orally consumed due to its lipophilicity. In order to overcome this low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aims to determine the antiproliferative effects of TQ and TQ-NLC on liver cancer cells integrated with the hepatitis B genome, Hep3B. The Hep3B was treated with TQ or TQ-NLC for 24, 48, and 72 hours via MTT assay. The results confirm that TQ or TQ-NLC inhibited the growth of Hep3B at IC50 <16.7 μM for 72 hours. TQ was also found to induce cell cycle arrest at the G1 checkpoint while TQ-NLC induced non-phase-specific cell cycle arrest. Further analysis using Annexin V staining confirmed the apoptotic induction of TQ or TQ-NLC via activation of caspases-3/7. In ROS management, TQ acted as a prooxidant (increased the level of ROS), while TQ-NLC acted as an antioxidant (reduced the level of ROS). Molecular analysis demonstrated that the GSH system and the Nrf2/Keap1 signaling pathway in Hep3B influenced the differential responses of the cells towards TQ or TQ-NLC. Hence, this study demonstrated that TQ and TQ-NLC have in vitro anticancer effects on the Hep3B.
  12. Latifah Saiful Yazan, Siti Hanani Roslie, Razana Mohd Ali, Ahmad Amir Shabrin Mohd Khaidi, Ong Yong Sze, Fatin Hannani Zakarial Ansar, et al.
    MyJurnal
    Introduction: Breast cancer is ranked first among other cancers in women. Ineffectiveness of current treatments and adverse effects such as multiple organ failure and nephrotoxicity are the common problems faced in cancer therapy. Therefore, alternatives to treat breast cancer metastasis with fewer toxic effects are actively sought-after. Dillenia suffruticosa (DS) commonly known as ‘Simpoh air’ has been a traditional remedy for cancer growth. Therefore, this study investigated the metastasis inhibiting properties of DS root dichloromethane extract (DCMDS) in tumour bearing female BALB/c mice and sub-acute multiple dose oral toxicity upon treatment with this extract. Methods: Forty-eight tumour bearing mice were given either oral treatment of DCMDS (50, 100 and 200 mg/kg) or doxorubicin (2 mg/kg) for 28 days and the degree of metastasis was analysed in each group. Thirty other female BALB/c mice were treated with DCMDS (50, 100 and 200 mg/kg) and the general behaviours, biochemical, haematological and histo- pathological changes were observed. Data were analysed with One-way ANOVA and Dunnet’s test where p
  13. Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, et al.
    Int J Nanomedicine, 2020;15:7703-7717.
    PMID: 33116496 DOI: 10.2147/IJN.S262395
    Background: Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs.

    Materials and Methods: TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed.

    Results: Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter.

    Conclusion: TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.

  14. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

  15. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
  16. Ardo FM, Khoo KS, Ahmad Sobri MZ, Suparmaniam U, Ethiraj B, Anwar AF, et al.
    Environ Pollut, 2024 Apr 01;346:123648.
    PMID: 38408504 DOI: 10.1016/j.envpol.2024.123648
    Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 μmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.
  17. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
  18. Ansar, Ahmad Yahaya AN, Kamil AA, Sabani R, Murad, Aisyah S
    Heliyon, 2022 Dec;8(12):e12455.
    PMID: 36619405 DOI: 10.1016/j.heliyon.2022.e12455
    [This corrects the article DOI: 10.1016/j.heliyon.2022.e11060.].
  19. Khan MA, Sen PP, Bhuiyan R, Kabir E, Chowdhury AK, Fukuta Y, et al.
    C. R. Biol., 2014 May;337(5):318-24.
    PMID: 24841958 DOI: 10.1016/j.crvi.2014.02.007
    Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012-2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.
  20. Satapathy P, Gaidhane S, Bishoyi AK, Ganesan S, Jayabalan K, Mishra S, et al.
    Int Urol Nephrol, 2025 Jan 09.
    PMID: 39786704 DOI: 10.1007/s11255-025-04370-z
    BACKGROUND: Sex hormone-binding globulin (SHBG) plays a critical role in regulating androgen bioavailability and has been hypothesized to influence prostate cancer risk, though existing evidence is inconsistent. This systematic review and meta-analysis aimed to evaluate the association between SHBG levels and prostate cancer risk.

    METHODS: A comprehensive search was conducted across PubMed, Embase, and Web of Science for studies published up to December 1, 2024. Observational studies assessing SHBG levels and prostate cancer risk were included. Effect sizes were pooled using random-effects meta-analysis. Heterogeneity was evaluated using the I2 statistic, and quality assessment was performed using the Newcastle-Ottawa Scale. Statistical analysis was performed using R software version 4.4.

    RESULTS: Sixteen studies, including 720,298 participants and 90,799 prostate cancer cases, were analyzed. The pooled odds ratio (OR) for prostate cancer risk per unit increase in SHBG was 0.907 (95% CI 0.799-1.030), indicating no statistically significant association. Substantial heterogeneity was observed among the included studies (I2 = 79%; P 

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links