Displaying publications 1 - 20 of 72 in total

  1. Khairul, A.J., Anwar, A., Ramelah, M.
    Background: (13) C – urea breath test (UBT) is sensitive and specific for detection of Helicobacter pylori (H. pylori) infection. Gastric biopsy culture for H. pylori confirms the diagnosis. Here, we analyzed data of all patients who were investigated for H. pylori infection using both tests throughout the year 2005. Materials and Methods : Retrospective data of 377 patients between the ages of 17 – 88 were identified through endoscopy records from January to December 2005. Upper endoscopy, UBT and gastric biopsy culture were performed on all patients simultaneously during each endoscopy session. Patients who had positive UBT and biopsy culture for H. pylori were treated with triple therapy of PPI, amoxicillin and clarithromycin for one week. A repeat of UBT was done at one-month post therapy. Results and Analysis: Twenty-eight patients on the list had no available data on UBT and were omitted from the analysis. Ethnic group Chinese comprised of 45.4% (n=163), followed by Malay, 37.3% (n=134), Indian, 10.6% (n=38) and others, 3.9% (n=14). UBT was positive in 23.7% (n=85)(figure1). H. pylori culture was positive in 19.2% (n=69)(figure1). Sixteen patients with UBT positive had H. pylori culture negative, 18.8% (n=16/85)(figure2). Five patients with H. pylori culture positive had UBT negative, 7.2% (n=5/69)(figure3). Ethnic group Indian had the highest incidence of UBT positive, 47.4% (n=18/38), followed by Others (Sikhs and foreigners) 42.8% (n=6/14), the Chinese 27.6% (n=45/163) and the Malays 11.6% (n= 16/138). UBT positive was the highest in the age group of 50 and above, 64.7% (n=55/85), followed by the age group between 30 to 49, 21.2% (n=18/85) and the age group of 29 and below, 14.5% (n=12/85). Out of the 85 UBT positive patients 91.8% (n=78/85)(figure4) of them responded to the conventional one week of triple therapy (PPI, amoxicillin, clarithromycin) with negative UBT at one-month post therapy compared to only 8.2% (n=7/85)(figure4) who failed with positive UBT at one-month post therapy.
  2. Khan NA, Anwar A, Siddiqui R
    Curr Med Chem, 2018 May 10.
    PMID: 29745319 DOI: 10.2174/0929867325666180510125633
    BACKGROUND: First discovered in the early 1970s, Acanthamoeba keratitis has remained a major eye infection and presents a significant threat to the public health, especially in developing countries. The aim is to present a timely review of our current understanding of the advances made in this field in a comprehensible manner and includes novel concepts and provides clear directions for immediate research priorities.

    METHOD: We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field.

    RESULTS: The present review focuses on novel diagnostic and therapeutic strategies in details which can provide access to management and treatment of Acanthamoeba keratitis. This coupled with the recently available genome sequence information together with high throughput genomics technology and innovative approaches should stimulate interest in the rational design of preventative and therapeutic measures. Current treatment of Acanthamoeba keratitis is problematic and often leads to infection recurrence. Better understanding of diagnosis, pathogenesis, pathophysiology and therapeutic regimens, would lead to novel strategies in treatment and prophylaxis.

  3. Anwar A, Siddiqui R, Khan NA
    ACS Chem Neurosci, 2019 01 16;10(1):6-12.
    PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321
    Pathogenic free-living amoebae including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri cause infections of the central nervous system (CNS), which almost always prove fatal. The mortality rate is high with the CNS infections caused by these microbes despite modern developments in healthcare and antimicrobial chemotherapy. The low awareness, delayed diagnosis, and lack of effective drugs are major hurdles to overcome these challenges. Nanomaterials have emerged as vital tools for concurrent diagnosis and therapy, which are commonly referred to as theranostics. Nanomaterials offer highly sensitive diagnostic systems and viable therapeutic effects as a single modality. There has been good progress to develop nanomaterials based efficient theranostic systems against numerous kinds of tumors, but this field is yet immature in the context of infectious diseases, particularly parasitic infections. Herein, we describe the potential value of theranostic applications of nanomaterials against brain infections due to pathogenic amoebae.
  4. Khan NA, Anwar A, Siddiqui R
    ACS Chem Neurosci, 2017 11 15;8(11):2355.
    PMID: 28933530 DOI: 10.1021/acschemneuro.7b00343
    Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri) can cause opportunistic infections involving the central nervous system. It is troubling that the mortality rate is more than 90% despite advances in antimicrobial chemotherapy over the last few decades. Here, we describe urgent key priorities for improving outcomes from infections due to brain-eating amoebae.
  5. Anwar A, Khan NA, Siddiqui R
    Parasit Vectors, 2018 01 09;11(1):26.
    PMID: 29316961 DOI: 10.1186/s13071-017-2572-z
    Acanthamoeba spp. are protist pathogens and causative agents of serious infections including keratitis and granulomatous amoebic encephalitis. Its ability to convert into dormant and highly resistant cysts form limits effectiveness of available therapeutic agents and presents a pivotal challenge for drug development. During the cyst stage, Acanthamoeba is protected by the presence of hardy cyst walls, comprised primarily of carbohydrates and cyst-specific proteins, hence synthesis inhibition and/or degradation of cyst walls is of major interest. This review focuses on targeting of Acanthamoeba cysts by identifying viable therapeutic targets.
  6. Anwar A, Chan KMJ, Awang Y, Ping DC
    Med J Malaysia, 2019 Oct;74(5):436-438.
    PMID: 31649223
    Anomalous Aortic Origin of a Coronary Artery (AAOCA) is a rare anomaly of the coronary artery with a considerable risk of sudden cardiac death due to ischaemia of the heart. Symptoms may include chest pain on exertion, breathlessness or dizziness. We encountered a case of a 46- year-old female who complained of exertional chest pain with a positive-stress test and subsequently diagnosed with AAOCA through CT angiography (CTA). She successfully underwent a coronary artery bypass graft (CABG) surgery using a saphenous vein graft with uneventful recovery. Right internal mammary artery (RIMA) was not used as it was flimsy and the flow was very poor.
  7. Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2378-2384.
    PMID: 32073257 DOI: 10.1021/acschemneuro.9b00613
    Brain-eating amoebae including Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris cause rare infections of the central nervous system that almost always result in death. The high mortality rate, lack of interest for drug development from pharmaceutical industries, and no available effective drugs present an alarming challenge. The current drugs employed in the management and therapy of these devastating diseases are amphotericin B, miltefosine, chlorhexidine, pentamidine, and voriconazole which are generally used in combination. However, clinical evidence shows that these drugs have limited efficacy and high host cell cytotoxicity. Repurposing of drugs is a practical approach to utilize commercially available, U.S. Food and Drug Administration approved drugs for one disease against rare diseases caused by brain-eating amoebae. In this Perspective, we highlight some of the success stories of drugs repositioned against neglected parasitic diseases and identify future potential for effective and sustainable drug development against brain-eating amoebae infections.
  8. Anwar A, Kee DMH, Ahmed A
    Cyberpsychol Behav Soc Netw, 2020 May;23(5):290-296.
    PMID: 32282237 DOI: 10.1089/cyber.2019.0407
    Workplace cyberbullying (WCB) is a new form of hostility in organizations in which information technology is used as a means to bully employees. The objective of this study is to determine the association between WCB and the interpersonal deviance (ID) of victims through parallel mediation through the ineffectual silence of employees and emotional exhaustion (EE). Conservation of resource (COR) theory and affective events theory were used as the study's guiding framework, and data were drawn from 351 white-collar employees who were employed in a variety of industries-such as banking, telecommunications sector, education, health care, insurance, and consultancy-in Lahore, Pakistan. The results show that ineffectual silence negatively mediated the relationship between cyberbullying and deviance, decreasing the level of deviance of employees who used silence as a coping mechanism. EE, however, positively mediated the relationship between cyberbullying and deviance. This means that when employees felt emotionally overwhelmed they retaliated by engaging in deviant behaviors and acting as a bully toward colleagues. Drawing on the COR theory and the affective events theory, the findings show that WCB has an impact on ID. From a practical standpoint, the study reveals that WCB can lead to ID and it also may associate with large financial costs and workplace disruptions. Thus, organizations should establish a culture that prevent employees from engaging in WCB and adopt practices of prevention and intervention because it is not only harmful to the employees but also to the organization.
  9. Abdelkader E. Ashour, Anwar A. Almuslim, Sheikh F. Ahmad, Sabry M. Attia, Rehan Ahmed, Ashok Kumar, et al.
    IIUM Medical Journal Malaysia, 2019;18(102):44-0.
    Colorectal cancer (CRC) constitutes one of the most aggressive malignancies worldwide and in Malaysia. Due to high recurrence rate and toxic side effects associated with radiation and chemotherapies, new agents are urgently needed. CARP-1 is a peri-nuclear phospho-protein which plays a dynamic role in regulating cell growth and apoptosis. CARP-1 functional mimetics (CFMs) are a class of compounds that stimulate CARP-1. CFM-4, a lead compound, was shown to suppress growth and metastasis of various cancers, other than CRC. We hypothesized that CFM-4 inhibits proliferation and metastasis in CRC. Materials and method: CFM-4 anti-cancer effects of on CRC cells were investigated using MTT assay, Annexin V/Propidium iodide (PI) apoptosis assay, cell cycle analysis, quantitative real-time PCR (qRT-PCR) and Western blotting. Antimetastatic activities were assessed by migration, colony formation and invasion assays. Results: CFM-4 inhibited CRC cell proliferation and was much more potent than the classical anti-CRC 5-fluorouracil. These effects were shown to be mediated at least in part by stimulating apoptosis, as indicated in our Annexin V/PI assay results. Cell cycle analysis showed that CFM-4 induced G2/M phase arrest. Molecularly, qRT-PCR results revealed that CFM-4 promoted intrinsic apoptosis by upregulating expression of caspase-8 and -9 , p53, PUMA and Noxa, and stimulated extrinsic apoptosis by enhancing expression of death receptors (DR4 and DR5). CFM-4 upregulated NF- k B signaling inhibitor A20-binding inhibitor protein and the PI3K negative regulator PTEN. Western blot analysis results revealed that CFM-4 enhanced expression of CARP1, caspase-8 and executioner caspase-3. Metastatic properties of the CRC cells were reduced by CFM-4 through blocking their capabilities to form colonies, migrate and invade through the matrix-coated membranes. Conclusion: The potent antitumor and anti-metastatic properties of CFM-4 against CRC are due to collective pro-apoptotic, anti-proliferative and anti-metastatic activities. Together our data warrants further investigations of CFM-4 as potential anti-tumor agent for CRC malignancy and metastasis.
  10. Anwar A, Azmi KN, Hamidon BB, Khalid BA
    Med J Malaysia, 2006 Mar;61(1):28-35.
    PMID: 16708731 MyJurnal
    This study was conducted to compare the treatment efficacy between a prandial glucose regulator, repaglinide and a new sulphonylurea, glimepiride in Muslim Type 2 diabetic patients who practice Ramadan fasting. Forty-one patients, previously treated with a sulphonylurea or metformin, were divided to receive either repaglinide (n=20, preprandially three-times daily) or glimepiride (n=21, preprandially once daily) 3 months before the month of Ramadan. During Ramadan, patients modified their eating pattern to two meals daily, and the triple doses of repaglinide were redistributed to two preprandial doses. Four point blood glucose monitoring were performed weekly during the month of Ramadan and the subsequent month. Measurements of the 4-point blood glucose were significantly lower in the glimepiride group compared to the repaglinide group both during and after Ramadan. The glycaemic excursion was better in the morning for the repaglinide group and better in the afternoon and evening for the glimepiride group during the Ramadan period. There was no statistically significant difference in the incidence of hypoglycaemia between the two groups during and after Ramadan. There was no difference in the glycaemic excursion post-Ramadan. The longer duration of action of glimepiride may offer an advantage over repaglinide during the 13.5 hours of fast in Ramadan for diabetic patients.
  11. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

  12. Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA
    ACS Chem Neurosci, 2019 01 16;10(1):658-666.
    PMID: 30346711 DOI: 10.1021/acschemneuro.8b00484
    Central nervous system (CNS) infections caused by free-living amoebae such as Acanthamoeba species and Naegleria fowleri are rare but fatal. A major challenge in the treatment against the infections caused by these amoebae is the discovery of novel compounds that can effectively cross the blood-brain barrier to penetrate the CNS. It is logical to test clinically approved drugs against CNS diseases for their potential antiamoebic effects since they are known for effective blood-brain barrier penetration and affect eukaryotic cell targets. The antiamoebic effects of clinically available drugs for seizures targeting gamma-amino butyric acid (GABA) receptor and ion channels were tested against Acanthamoeba castellanii belonging to the T4 genotype and N. fowleri. Three such drugs, namely, diazepam (Valium), phenobarbitone (Luminal), phenytoin (Dilantin), and their silver nanoparticles (AgNPs) were evaluated against both trophozoites and cysts stage. Drugs alone and drug conjugated silver nanoparticles were tested for amoebicidal, cysticidal, and host-cell cytotoxicity assays. Nanoparticles were synthesized by sodium borohydride reduction of silver nitrate with drugs as capping agents. Drug conjugated nanoconjugates were characterized by ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopies and atomic force microscopy (AFM). In vitro moebicidal assay showed potent amoebicidal effects for diazepam, phenobarbitone, and phenytoin-conjugated AgNPs as compared to drugs alone against A. castellanii and N. fowleri. Furthermore, both drugs and drug conjugated AgNPs showed compelling cysticidal effects. Drugs conjugations with silver nanoparticles enhanced their antiacanthamoebic activity. Interestingly, amoeba-mediated host-cell cytotoxicity was also significantly reduced by drugs alone as well as their nanoconjugates. Since, these drugs are being used to target CNS diseases, their evaluation against brain-eating amoebae seems feasible due to advantages such as permeability of the blood-brain barrier, established pharmacokinetics and dynamics, and United States Food and Drug Administration (FDA) approval. Given the limited availability of effective drugs against brain-eating amoebae, the clinically available drugs tested here present potential for further in vivo studies.
  13. Anwar A, Siddiqui R, Raza Shah M, Ahmed Khan N
    J Microbiol Biotechnol, 2019 Jan 28;29(1):171-177.
    PMID: 30415525 DOI: 10.4014/jmb.1805.05028
    Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.
  14. Rajendran K, Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2017 12 20;8(12):2626-2630.
    PMID: 29206032 DOI: 10.1021/acschemneuro.7b00430
    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.
  15. Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA
    Parasit Vectors, 2019 Jun 03;12(1):280.
    PMID: 31159839 DOI: 10.1186/s13071-019-3528-2
    BACKGROUND: Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity.

    METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.

    RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.

    CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

  16. Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R
    AMB Express, 2019 Jun 28;9(1):95.
    PMID: 31254123 DOI: 10.1186/s13568-019-0816-3
    The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
  17. Anwar A, Siddiqui R, Raza Shah M, Khan NA
    J Microbiol Biotechnol, 2019 May 28;29(5):713-720.
    PMID: 31030451 DOI: 10.4014/jmb/1903.03009
    Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
  18. Sam CX, Anwar AZ, Ahmad AR, Solayar GN
    Malays Orthop J, 2021 Mar;15(1):119-123.
    PMID: 33880158 DOI: 10.5704/MOJ.2103.018
    Introduction: Reverse total shoulder arthroplasty provides a surgical alternative to standard total shoulder arthroplasty for the treatment of cuff tear arthropathy, arthritis and fracture sequelae. This study aimed to assess the short-term outcomes following reverse total shoulder arthroplasty for patients in a large public hospital in Malaysia.

    Materials and Methods: We identified and performed five primary reverse total shoulder arthroplasties between 1 May 2019 and 1 June 2020. All patients were contactable and available for analysis. Assessment of functional outcomes was performed using the Constant-Murley score, the patient satisfaction score (PSS), and imaging studies. The mean follow-up from operation to the time of reporting was 9.6 months (range, 3 to 14 months).

    Results: The median age for our patients was 58 years (±11.91). The most common indication for surgery was post-traumatic arthritis, followed by rotator cuff arthropathy and osteoarthritis. The mean Constant score improved from 9.0 pre-operatively to 52.3 post-operatively at a mean of 9.6 months. The majority of the patients were satisfied with the surgery as the post-operative range of motion, especially anterior elevation and abduction, improved in four of our patients and there were no short-term complications, for example, of infection or revisions, reported at the last follow-up.

    Conclusion: This study has shown that reverse total shoulder arthroplasty can yield good short-term outcomes for the treatment of complex shoulder problems in addition to cuff tear arthropathy. It should be considered a treatment for rotator cuff tears, severe arthritis and ≥ 3 parts proximal humeral fractures.

  19. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    Mini Rev Med Chem, 2019;19(12):980-987.
    PMID: 30868950 DOI: 10.2174/1389557519666190313161854
    Pathogenic free-living amoeba are known to cause a devastating infection of the central nervous system and are often referred to as "brain-eating amoebae". The mortality rate of more than 90% and free-living nature of these amoebae is a cause for concern. It is distressing that the mortality rate has remained the same over the past few decades, highlighting the lack of interest by the pharmaceutical industry. With the threat of global warming and increased outdoor activities of public, there is a need for renewed interest in identifying potential anti-amoebic compounds for successful prognosis. Here, we discuss the available chemotherapeutic options and opportunities for potential strategies in the treatment and diagnosis of these life-threatening infections.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links