MATERIALS AND METHODS: A prospective epidemiologic and microbiologic study was conducted of MRKP isolated from the blood and wound of a boy with necrotizing fasciitis after a 7-day course of ceftazidime and amikacin. In the following 2 weeks, phenotypically similar MRKP were isolated from the blood cultures of four other patients and rectal swabs of another three patients and two liquid soap samples located in the same ward.
RESULTS: Antimicrobial profiles demonstrated that all the isolates were resistant to ceftazidime, sensitive to imipenem and ciprofloxacin, and confirmed to be extended-spectrum beta-lactamase producers. Plasmids of varying molecular weights were present in all isolates. In eight of these isolates, which included four from blood, there were common large molecular weight plasmids ranging from 80 kb to 100 kb. Pulsed-field gel electrophoresis analysis using XbaI demonstrated six different DNA profiles, A to F. Profile A was shared by two blood culture isolates and were related by 91%. Profile B was found in one rectal swab isolate and one isolate from liquid soap and were related by 94%. Profile C was shared by one blood isolate and one liquid soap isolate and showed 100% relatedness. Profiles D, E, and F each were demonstrated by one blood isolate and two rectal swab isolates, respectively. These showed only 65% relatedness.
CONCLUSIONS: The MRKP strains in this outbreak were not clonal in origin. The decline of the outbreak after 4 weeks was attributed to the reemphasis of standard infection control procedures and the implementation of a program that addressed sites of environmental contamination.
RECENT FINDINGS: p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed.
SUMMARY: Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).
METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls).
RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls.
CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.
METHODS: Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction.
RESULTS: DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued.
CONCLUSION: DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data.
KEY POINTS: Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.