Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Muniandy K, Tan MH, Song BK, Ayub Q, Rahman S
    Plant Mol Biol, 2019 May;100(1-2):33-46.
    PMID: 30788769 DOI: 10.1007/s11103-019-00841-x
    KEY MESSAGE: Grain amyloplast and leaf chloroplast DNA sequences are identical in rice plants but are differentially methylated. The leaf chloroplast DNA becomes more methylated as the rice plant ages. Rice is an important crop worldwide. Chloroplasts and amyloplasts are critical organelles but the amyloplast genome is poorly studied. We have characterised the sequence and methylation of grain amyloplast DNA and leaf chloroplast DNA in rice. We have also analysed the changes in methylation patterns in the chloroplast DNA as the rice plant ages. Total genomic DNA from grain, old leaf and young leaf tissues were extracted from the Oryza sativa ssp. indica cv. MR219 and sequenced using Illumina Miseq. Sequence variant analysis revealed that the amyloplast and chloroplast DNA of MR219 were identical to each other. However, comparison of CpG and CHG methylation between the identical amyloplast and chloroplast DNA sequences indicated that the chloroplast DNA from rice leaves collected at early ripening stage was more methylated than the amyloplast DNA from the grains of the same plant. The chloroplast DNA became more methylated as the plant ages so that chloroplast DNA from young leaves was less methylated overall than amyloplast DNA. These differential methylation patterns were primarily observed in organelle-encoded genes related to photosynthesis followed by those involved in transcription and translation.
  2. Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS
    BMC Res Notes, 2021 Mar 04;14(1):83.
    PMID: 33663564 DOI: 10.1186/s13104-021-05493-z
    OBJECTIVE: The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen.

    RESULTS: One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.

  3. Szpak M, Xue Y, Ayub Q, Tyler-Smith C
    FEBS Lett., 2019 07;593(13):1431-1448.
    PMID: 31116407 DOI: 10.1002/1873-3468.13447
    Classic selective sweeps occur when positive selection increases a variant's frequency from low to high in a population, and underlie some long-studied human characteristics such as variation in skin, hair or eye colour. In such well-studied 'gold standard' examples, a known variant has been associated with a plausible phenotype and underlying selective force. Signatures of classic sweeps have more recently been detected in population-genetic data independently of any prior information about the corresponding phenotype or selective force, and usually without suggesting any insights into these. Motivated by the need to understand such candidates, we first review the gold standards and show that our understanding of them is often incomplete or unconvincing; only two of the examples we consider are compellingly explained. We assess approaches for large-scale association of classic sweep candidate variants to phenotypes and selective forces, test these on the gold standards, and discuss the standards of evidence needed to adequately understand a selective sweep.
  4. Ayub Q, Ngadi A, Rashid S, Habib HA
    PLoS One, 2018;13(2):e0191580.
    PMID: 29438438 DOI: 10.1371/journal.pone.0191580
    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.
  5. Goh YK, Zoqratt MZHM, Goh YK, Ayub Q, Ting ASY
    Biology (Basel), 2020 Nov 27;9(12).
    PMID: 33260913 DOI: 10.3390/biology9120424
    Basal stem rot (BSR), caused by Ganoderma boninense, is the most devastating oil palm disease in South East Asia, costing US$500 million annually. Various soil physicochemical parameters have been associated with an increase in BSR incidences. However, very little attention has been directed to understanding the relationship between soil microbiome and BSR incidence in oil palm fields. The prokaryotic and eukaryotic microbial diversities of two coastal soils, Blenheim soil (Typic Quartzipsamment-calcareous shell deposits, light texture) with low disease incidence (1.9%) and Bernam soil (Typic Endoaquept-non-acid sulfate) with high disease incidence (33.1%), were determined using the 16S (V3-V4 region) and 18S (V9 region) rRNA amplicon sequencing. Soil physicochemical properties (pH, electrical conductivity, soil organic matter, nitrogen, phosphorus, cation exchange capacity, exchangeable cations, micronutrients, and soil physical parameters) were also analyzed for the two coastal soils. Results revealed that Blenheim soil comprises higher prokaryotic and eukaryotic diversities, accompanied by higher pH and calcium content. Blenheim soil was observed to have a higher relative abundance of bacterial taxa associated with disease suppression such as Calditrichaeota, Zixibacteria, GAL15, Omnitrophicaeota, Rokubacteria, AKYG587 (Planctomycetes), JdFR-76 (Calditrichaeota), and Rubrobacter (Actinobacteria). In contrast, Bernam soil had a higher proportion of other bacterial taxa, Chloroflexi and Acidothermus (Actinobacteria). Cercomonas (Cercozoa) and Calcarisporiella (Ascomycota) were eukaryotes that are abundant in Blenheim soil, while Uronema (Ciliophora) and mammals were present in higher abundance in Bernam soil. Some of the bacterial taxa have been reported previously in disease-suppressive and -conducive soils as potential disease-suppressive or disease-inducible bacteria. Furthermore, Cercomonas was reported previously as potential bacterivorous flagellates involved in the selection of highly toxic biocontrol bacteria, which might contribute to disease suppression indirectly. The results from this study may provide valuable information related to soil microbial community structures and their association with soil characteristics and soil susceptibility to Ganoderma.
  6. Yan CZY, Austin CM, Ayub Q, Rahman S, Gan HM
    FEMS Microbiol Lett, 2019 09 01;366(17).
    PMID: 31589302 DOI: 10.1093/femsle/fnz211
    The Malaysian and global shrimp aquaculture production has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND) typically caused by Vibrio parahaemolyticus harboring the pVA plasmid containing the pirAVp and pirBVp genes, which code for Photorhabdus insect-related (Pir) toxin. The limited genomic resource for V. parahaemolyticus strains from Malaysian aquaculture farms precludes an in-depth understanding of their diversity and evolutionary relationships. In this study, we isolated shrimp-associated and environmental (rearing water) V. parahaemolyticus from three aquaculture farms located in Northern and Central Malaysia followed by whole-genome sequencing of 40 randomly selected isolates on the Illumina MiSeq. Phylogenomic analysis and multilocus sequence typing (MLST) reveal distinct lineages of V. parahaemolyticus that harbor the pirABVp genes. The recovery of pVA plasmid backbone devoid of pirAVp or pirABVp in some V. parahaemolyticus isolates suggests that the toxin genes are prone to deletion. The new insight gained from phylogenomic analysis of Asian V. parahaemolyticus, in addition to the observed genomic instability of pVa plasmid, will have implications for improvements in aquaculture practices to diagnose, treat or limit the impacts of this disease.
  7. Iqbal F, Ayub Q, Song BK, Wilson R, Fahim M, Rahman S
    Mitochondrial DNA B Resour, 2019 Dec 18;5(1):348-350.
    PMID: 33366551 DOI: 10.1080/23802359.2019.1704637
    Corvus macrorhynchos formerly referred to as the jungle crow or the large-billed crow is a polytypic species with unresolved taxonomy, comprising various subspecies widespread across South, Southeast, and East Asia. In this study, we report the complete mitogenome of one of these subspecies, Corvus macrorhynchos intermedius (Himalaya crow), from Pakistan. The mitochondrial genome is circular, 16,927 bp and contains typical animal mitochondrial genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA) and one non-coding region (D-loop) with a nucleotide content of A (30.6%), T (24.8%), G (14.8%), and C (29.8%). Phylogenetic analysis using the whole mitochondrial genome showed that C. m. intermedius and only reported subspecies Corvus macrorhynchos culminatus (Indian Jungle crow) are genetically distinct and it supports the recognition of the latter as a separate biospecies.
  8. Tai KY, Wong K, Aghakhanian F, Parhar IS, Dhaliwal J, Ayub Q
    BMC Genet, 2020 03 14;21(1):31.
    PMID: 32171244 DOI: 10.1186/s12863-020-0835-8
    BACKGROUND: Publicly available genome data provides valuable information on the genetic variation patterns across different modern human populations. Neuropeptide genes are crucial to the nervous, immune, endocrine system, and physiological homeostasis as they play an essential role in communicating information in neuronal functions. It remains unclear how evolutionary forces, such as natural selection and random genetic drift, have affected neuropeptide genes among human populations. To date, there are over 100 known human neuropeptides from the over 1000 predicted peptides encoded in the genome. The purpose of this study is to analyze and explore the genetic variation in continental human populations across all known neuropeptide genes by examining highly differentiated SNPs between African and non-African populations.

    RESULTS: We identified a total of 644,225 SNPs in 131 neuropeptide genes in 6 worldwide population groups from a public database. Of these, 5163 SNPs that had ΔDAF |(African - non-African)| ≥ 0.20 were identified and fully annotated. A total of 20 outlier SNPs that included 19 missense SNPs with a moderate impact and one stop lost SNP with high impact, were identified in 16 neuropeptide genes. Our results indicate that an overall strong population differentiation was observed in the non-African populations that had a higher derived allele frequency for 15/20 of those SNPs. Highly differentiated SNPs in four genes were particularly striking: NPPA (rs5065) with high impact stop lost variant; CHGB (rs6085324, rs236150, rs236152, rs742710 and rs742711) with multiple moderate impact missense variants; IGF2 (rs10770125) and INS (rs3842753) with moderate impact missense variants that are in linkage disequilibrium. Phenotype and disease associations of these differentiated SNPs indicated their association with hypertension and diabetes and highlighted the pleiotropic effects of these neuropeptides and their role in maintaining physiological homeostasis in humans.

    CONCLUSIONS: We compiled a list of 131 human neuropeptide genes from multiple databases and literature survey. We detect significant population differentiation in the derived allele frequencies of variants in several neuropeptide genes in African and non-African populations. The results highlights SNPs in these genes that may also contribute to population disparities in prevalence of diseases such as hypertension and diabetes.

  9. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
  10. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
  11. Wahyudi F, Aghakhanian F, Rahman S, Teo YY, Szpak M, Dhaliwal J, et al.
    BMC Bioinformatics, 2021 Dec 18;22(1):604.
    PMID: 34922440 DOI: 10.1186/s12859-021-04506-9
    BACKGROUND: In population genomics, polymorphisms that are highly differentiated between geographically separated populations are often suggestive of Darwinian positive selection. Genomic scans have highlighted several such regions in African and non-African populations, but only a handful of these have functional data that clearly associates candidate variations driving the selection process. Fine-Mapping of Adaptive Variation (FineMAV) was developed to address this in a high-throughput manner using population based whole-genome sequences generated by the 1000 Genomes Project. It pinpoints positively selected genetic variants in sequencing data by prioritizing high frequency, population-specific and functional derived alleles.

    RESULTS: We developed a stand-alone software that implements the FineMAV statistic. To graphically visualise the FineMAV scores, it outputs the statistics as bigWig files, which is a common file format supported by many genome browsers. It is available as a command-line and graphical user interface. The software was tested by replicating the FineMAV scores obtained using 1000 Genomes Project African, European, East and South Asian populations and subsequently applied to whole-genome sequencing datasets from Singapore and China to highlight population specific variants that can be subsequently modelled. The software tool is publicly available at https://github.com/fadilla-wahyudi/finemav .

    CONCLUSIONS: The software tool described here determines genome-wide FineMAV scores, using low or high-coverage whole-genome sequencing datasets, that can be used to prioritize a list of population specific, highly differentiated candidate variants for in vitro or in vivo functional screens. The tool displays these scores on the human genome browsers for easy visualisation, annotation and comparison between different genomic regions in worldwide human populations.

  12. Iqbal F, Wilson R, Ayub Q, Song BK, Krzeminska-Ahmedzai U, Talei A, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(13):35715-35726.
    PMID: 36536201 DOI: 10.1007/s11356-022-24712-z
    Urban-dwelling birds can be useful biomonitors to assess the impact of the urbanisation on both public and wildlife health. Widely distributed urban bird species, the House crow, was studied for heavy metal accumulation levels from nine cities of South Asia, Southeast Asia and Africa that border the Indian Ocean. Feathers were spectroscopically investigated for the deposition of ten heavy metals, i.e. As, Zn, Pb, Cd, Ni, iron Fe, Mn, Cr, Cu and Li. Fe and Zn were found to be the most prevalent metals in all sites. Measured concentrations of Pb (4.38-14.77 mg kg-1) overall, and Fe (935.66 mg kg-1) and Cu (67.17 mg kg-1) at some studied sites were above the toxicity levels reported lethal in avian toxicological studies. Multivariate analysis and linear models supported geographical location as a significant predictor for the level of most of the metals. Zn and Cu, generally and Pb, Cd, Mn, Cr at some sites exhibited potential bioaccumulation from surrounding environments. Inter-species comparisons strengthen the inference that the House crow is a reliable bioindicator species for the qualitative assessment of local urban environmental pollution and could be a useful tool for inter-regional monitoring programs.
  13. Lee CZ, Zoqratt MZHM, Phipps ME, Barr JJ, Lal SK, Ayub Q, et al.
    Sci Rep, 2022 Feb 03;12(1):1824.
    PMID: 35115615 DOI: 10.1038/s41598-022-05656-3
    The human gut contains a complex microbiota dominated by bacteriophages but also containing other viruses and bacteria and fungi. There are a growing number of techniques for the extraction, sequencing, and analysis of the virome but currently no standardized protocols. This study established an effective workflow for virome analysis to investigate the virome of stool samples from two understudied ethnic groups from Malaysia: the Jakun and Jehai Orang Asli. By using the virome extraction and analysis workflow with the Oxford Nanopore Technology, long-read sequencing successfully captured close to full-length viral genomes. The virome composition of the two indigenous Malaysian communities were remarkably different from those found in other parts of the world. Additionally, plant viruses found in the viromes of these individuals were attributed to traditional food-seeking methods. This study establishes a human gut virome workflow and extends insights into the healthy human gut virome, laying the groundwork for comparative studies.
  14. Dwiyanto J, Ayub Q, Lee SM, Foo SC, Chong CW, Rahman S
    Microb Genom, 2021 Aug;7(8).
    PMID: 34463609 DOI: 10.1099/mgen.0.000619
    Ethnicity is consistently reported as a strong determinant of human gut microbiota. However, the bulk of these studies are from Western countries, where microbiota variations are mainly driven by relatively recent migration events. Malaysia is a multicultural society, but differences in gut microbiota persist across ethnicities. We hypothesized that migrant ethnic groups continue to share fundamental gut traits with the population in the country of origin due to shared cultural practices despite subsequent geographical separation. To test this hypothesis, the 16S rRNA gene amplicons from 16 studies comprising three major ethnic groups in Malaysia were analysed, covering 636 Chinese, 248 Indian and 123 Malay individuals from four countries (China, India, Indonesia and Malaysia). A confounder-adjusted permutational multivariate analysis of variance (PERMANOVA) detected a significant association between ethnicity and the gut microbiota (PERMANOVA R2=0.005, pseudo-F=2.643, P=0.001). A sparse partial least squares - discriminant analysis model trained using the gut microbiota of individuals from China, India and Indonesia (representation of Chinese, Indian and Malay ethnic group, respectively) showed a better-than-random performance in classifying Malaysian of Chinese descent, although the performance for Indian and Malay were modest (true prediction rate, Chinese=0.60, Indian=0.49, Malay=0.44). Separately, differential abundance analysis singled out Ligilactobacillus as being elevated in Indians. We postulate that despite the strong influence of geographical factors on the gut microbiota, cultural similarity due to a shared ethnic origin drives the presence of a shared gut microbiota composition. The interplay of these factors will likely depend on the circumstances of particular groups of migrants.
  15. Szpak M, Mezzavilla M, Ayub Q, Chen Y, Xue Y, Tyler-Smith C
    Genome Biol, 2018 Jan 17;19(1):5.
    PMID: 29343290 DOI: 10.1186/s13059-017-1380-2
    We present a new method, Fine-Mapping of Adaptive Variation (FineMAV), which combines population differentiation, derived allele frequency, and molecular functionality to prioritize positively selected candidate variants for functional follow-up. We calibrate and test FineMAV using eight experimentally validated "gold standard" positively selected variants and simulations. FineMAV has good sensitivity and a low false discovery rate. Applying FineMAV to the 1000 Genomes Project Phase 3 SNP dataset, we report many novel selected variants, including ones in TGM3 and PRSS53 associated with hair phenotypes that we validate using available independent data. FineMAV is widely applicable to sequence data from both human and other species.
  16. Iqbal F, Ayub Q, Wilson R, Song BK, Talei A, Yeong KY, et al.
    Environ Monit Assess, 2021 Mar 30;193(4):237.
    PMID: 33783594 DOI: 10.1007/s10661-021-08966-7
    A widely distributed urban bird, the house crow (Corvus splendens), was used to assess bioavailable heavy metals in urban and rural environments across Pakistan. Bioaccumulation of arsenic (As), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and copper (Cu) was investigated in wing feathers of 96 crows collected from eight locations and categorized into four groups pertaining to their geographical and environmental similarities. Results revealed that the concentrations of Pb, Ni, Mn, Cu, and Cr were positively correlated and varied significantly among the four groups. Zn, Fe, Cr, and Cu regarded as industrial outputs, were observed in birds both in industrialized cities and in adjoining rural agricultural areas irrigated through the Indus Basin Irrigation System. Birds in both urban regions accrued Pb more than the metal toxicity thresholds for birds. The house crow was ranked in the middle on the metal accumulation levels in feathers between highly accumulating raptor and piscivore and less contaminated insectivore and granivore species in the studied areas,. This study suggests that the house crow is an efficient bioindicator and supports the feasibility of using feathers to discriminate the local pollution differences among terrestrial environments having different levels and kinds of anthropogenic activities.
  17. Masri A, Khan NA, Zoqratt MZHM, Ayub Q, Anwar A, Rao K, et al.
    BMC Microbiol, 2021 Feb 17;21(1):51.
    PMID: 33596837 DOI: 10.1186/s12866-021-02097-2
    BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study.

    RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P

  18. Lai WL, Chew J, Gatherer D, Ngoprasert D, Rahman S, Ayub Q, et al.
    J Hered, 2021 03 29;112(2):214-220.
    PMID: 33439997 DOI: 10.1093/jhered/esab004
    Sun bear populations are fragmented and at risk from habitat loss and exploitation for body parts. These threats are made worse by significant gaps in knowledge of sun bear population genetic diversity, population connectivity, and taxonomically significant management units. Using a complete sun bear mitochondrial genome, we developed a set of mitochondrial markers to assess haplotype variation and the evolutionary history of sun bears from Peninsular (West) Malaysia and Sabah (East Malaysia). Genetic samples from 28 sun bears from Peninsular Malaysia, 36 from Sabah, and 18 from Thailand were amplified with primers targeting a 1800 bp region of the mitochondrial genome including the complete mitochondrial control region and adjacent genes. Sequences were analyzed using phylogenetic methods. We identified 51 mitochondrial haplotypes among 82 sun bears. Phylogenetic and network analyses provided strong support for a deep split between Malaysian sun bears and sun bears in East Thailand and Yunnan province in China. The Malaysian lineage was further subdivided into two clades: Peninsular Malaysian and Malaysian Borneo (Sabah). Sun bears from Thailand occurred in both Sabah and Peninsular Malaysian clades. Our study supports recent findings that sun bears from Sundaland form a distinct clade from those in China and Indochina with Thailand possessing lineages from the three clades. Importantly, we demonstrate a more recent and clear genetic delineation between sun bears from the Malay Peninsula and Sabah indicating historical barriers to gene flow within the Sundaic region.
  19. Muzahid NH, Hussain MH, Huët MAL, Dwiyanto J, Su TT, Reidpath D, et al.
    Microb Genom, 2023 Apr;9(4).
    PMID: 37018035 DOI: 10.1099/mgen.0.000977
    Acinetobacter baumannii is a common cause of multidrug-resistant (MDR) nosocomial infections around the world. However, little is known about the persistence and dynamics of A. baumannii in a healthy community. This study investigated the role of the community as a prospective reservoir for A. baumannii and explored possible links between hospital and community isolates. A total of 12 independent A. baumannii strains were isolated from human faecal samples from the community in Segamat, Malaysia, in 2018 and 2019. Another 15 were obtained in 2020 from patients at the co-located tertiary public hospital. The antimicrobial resistance profile and biofilm formation ability were analysed, and the relatedness of community and hospital isolates was determined using whole-genome sequencing (WGS). Antibiotic profile analysis revealed that 12 out of 15 hospital isolates were MDR, but none of the community isolates were MDR. However, phylogenetic analysis based on single-nucleotide polymorphisms (SNPs) and a pangenome analysis of core genes showed clustering between four community and two hospital strains. Such clustering of strains from two different settings based on their genomes suggests that these strains could persist in both. WGS revealed 41 potential resistance genes on average in the hospital strains, but fewer (n=32) were detected in the community strains. In contrast, 68 virulence genes were commonly seen in strains from both sources. This study highlights the possible transmission threat to public health posed by virulent A. baumannii present in the gut of asymptomatic individuals in the community.
  20. Muzahid NH, Md Zoqratt MZH, Ten KE, Hussain MH, Su TT, Ayub Q, et al.
    Sci Rep, 2023 Aug 03;13(1):12596.
    PMID: 37537198 DOI: 10.1038/s41598-023-39642-0
    Acinetobacter species are widely known opportunistic pathogens causing severe community and healthcare-associated infections. One such emerging pathogen, Acinetobacter colistiniresistens, is known to exhibit intrinsic resistance to colistin. We investigated the molecular characteristics of A. colistiniresistens strain C-214, isolated from the fecal sample of a healthy community member, as part of a cohort study being conducted in Segamat, Malaysia. Comparison of the whole genome sequence of C-214 with other A. colistiniresistens sequences retrieved from the NCBI database showed 95% sequence identity or more with many of the genome sequences representing that species. Use of the Galleria mellonella killing assay showed that C-214 was pathogenic in this model infection system. The strain C-214 had a colistin and polymyxin B MIC of 32 and 16 mg/L, respectively. Besides, it was resistant to cefotaxime, amikacin, and tetracycline and showed moderate biofilm-producing ability. Different genes associated with virulence or resistance to major classes of antibiotics were detected. We observed mutations in lpxA/C/D in C-214 and other A. colistiniresistens strains as probable causes of colistin resistance, but the biological effects of these mutations require further investigation. This study provides genomic insights into A. colistiniresistens, a potentially pathogenic bacterium isolated from a community member and notes the public health threat it may pose.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links