Displaying all 11 publications

Abstract:
Sort:
  1. Rahman S, Khan MT, Akib S, Din NB, Biswas SK, Shirazi SM
    ScientificWorldJournal, 2014;2014:721357.
    PMID: 24701186 DOI: 10.1155/2014/721357
    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.
  2. Sheam MM, Syed SB, Nain Z, Tang SS, Paul DK, Ahmed KR, et al.
    J Chemother, 2020 Dec;32(8):395-410.
    PMID: 32820711 DOI: 10.1080/1120009X.2020.1807231
    Bacteria are the most common aetiological agents of community-acquired pneumonia (CAP) and use a variety of mechanisms to evade the host immune system. With the emerging antibiotic resistance, CAP-causing bacteria have now become resistant to most antibiotics. Consequently, significant morbimortality is attributed to CAP despite their varying rates depending on the clinical setting in which the patients being treated. Therefore, there is a pressing need for a safe and effective alternative or supplement to conventional antibiotics. Bacteriophages could be a ray of hope as they are specific in killing their host bacteria. Several bacteriophages had been identified that can efficiently parasitize bacteria related to CAP infection and have shown a promising protective effect. Thus, bacteriophages have shown immense possibilities against CAP inflicted by multidrug-resistant bacteria. This review provides an overview of common antibiotic-resistant CAP bacteria with a comprehensive summarization of the promising bacteriophage candidates for prospective phage therapy.
  3. Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD
    Phytochemistry, 2018 Oct;154:94-105.
    PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002
    Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
  4. Tang SS, Biswas SK, Tan WS, Saha AK, Leo BF
    PeerJ, 2019;7:e6225.
    PMID: 30984476 DOI: 10.7717/peerj.6225
    Shigella-infected bacillary dysentery or commonly known as Shigellosis is a leading cause of morbidity and mortality worldwide. The gradual emergence of multidrug resistant Shigella spp. has triggered the search for alternatives to conventional antibiotics. Phage therapy could be one such suitable alternative, given its proven long term safety profile as well as the rapid expansion of phage therapy research. To be successful, phage therapy will need an adequate regulatory framework, effective strategies, the proper selection of appropriate phages, early solutions to overcome phage therapy limitations, the implementation of safety protocols, and finally improved public awareness. To achieve all these criteria and successfully apply phage therapy against multidrug resistant shigellosis, a comprehensive study is required. In fact, a variety of phage-based approaches and products including single phages, phage cocktails, mutated phages, genetically engineered phages, and combinations of phages with antibiotics have already been carried out to test the applications of phage therapy against multidrug resistant Shigella. This review provides a broad survey of phage treatments from past to present, focusing on the history, applications, limitations and effective solutions related to, as well as the prospects for, the use of phage therapy against multidrug resistant Shigella spp. and other multidrug resistant bacterial pathogens.
  5. Roy DC, Biswas SK, Sheam MM, Hasan MR, Saha AK, Roy AK, et al.
    Curr Res Microb Sci, 2020 Sep;1:37-43.
    PMID: 34841300 DOI: 10.1016/j.crmicr.2020.06.001
    Globally, water pollution from the textile industries is an alarming issue. Malachite Green dye of the triphenylmethane group is an extensively used dye in the fabric industries that is emitted through textile wastewater. This study aimed to isolate and characterize potential Malachite Green (MG) dye degrading bacteria from textile effluents. Different growth and culture parameters such as temperature, pH and dye concentration were optimized to perform the dye-degradation assay using different concentrations of MG dye in the mineral salt medium. A photo-electric-colorimeter was used to measure the decolorizing activity of bacteria at different time intervals after aerobic incubation. Two potential bacterial strains of Enterobacter spp. CV-S1 (accession no: MH450229) and Enterobacter spp. CM-S1 (accession no: MH447289) were isolated from textile effluents exhibiting potential MG dye decoloring efficiency. Further, the RAPD analysis and 16S rRNA sequencing confirmed the genetic differences of the isolated strains. Enterobacter sp CV-S1 and Enterobacter sp CM-S1 can completely decolor MG dye up to 15 mg/L under shaking condition without any requirement of sole carbon source. Thus, these two bacteria have the potency to be utilized in the textile wastewater treatment plant.
  6. Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK, et al.
    PeerJ, 2018;6:e5015.
    PMID: 29942689 DOI: 10.7717/peerj.5015
    Industrial effluent containing textile dyes is regarded as a major environmental concern in the present world. Crystal Violet is one of the vital textile dyes of the triphenylmethane group; it is widely used in textile industry and known for its mutagenic and mitotic poisoning nature. Bioremediation, especially through bacteria, is becoming an emerging and important sector in effluent treatment. This study aimed to isolate and identify Crystal Violet degrading bacteria from industrial effluents with potential use in bioremediation. The decolorizing activity of the bacteria was measured using a photo electric colorimeter after aerobic incubation in different time intervals of the isolates. Environmental parameters such as pH, temperature, initial dye concentration and inoculum size were optimized using mineral salt medium containing different concentration of Crystal Violet dye. Complete decolorizing efficiency was observed in a mineral salt medium containing up to 150 mg/l of Crystal Violet dye by 10% (v/v) inoculums of Enterobacter sp. CV-S1 tested under 72 h of shaking incubation at temperature 35 °C and pH 6.5. Newly identified bacteria Enterobacter sp. CV-S1, confirmed by 16S ribosomal RNA sequencing, was found as a potential bioremediation biocatalyst in the aerobic degradation/de-colorization of Crystal Violet dye. The efficiency of degrading triphenylmethane dye by this isolate, minus the supply of extra carbon or nitrogen sources in the media, highlights the significance of larger-scale treatment of textile effluent.
  7. Biswas SK, Sumon MMH, Ahmed S, Ruma RA, Parvin A, Paul DK, et al.
    Phage (New Rochelle), 2024 Dec;5(4):186-202.
    PMID: 40045940 DOI: 10.1089/phage.2024.0005
    The escalating global threat of antibiotic resistance has prompted a critical need for innovative approaches to bacterial infection treatment. In terms of management, bacterial-associated disorders have reached a critical point in the world due to the advent of drug-resistant types of bacteria. Nonetheless, continued bacteriophage research presents a promising frontier in the battle against bacterial infections. In this study, we explored the effectiveness of bacteriophage therapy against antibiotic-resistant bacteria. According to our viewpoint, phage therapy could replace antibiotics in terms of safety, efficacy, and specificity. Furthermore, phage therapy offers versatility in administering single phage, phage products, or modified phage against various resistant bacteria. Moreover, Phage cocktails, with their synergistic combinations, showcase a holistic approach, mitigating the risk of resistance and expanding treatment possibilities. Similarly, the synergy between phages and antibiotics holds promise for overcoming antibiotic resistance and forging a path toward more effective and sustainable antimicrobial strategies. The review provides insights into the transformative impact of bacteriophage therapy on current bacterial infection treatment paradigms, its application with methodological challenges and limitations, as well as insights to scientists and policymakers on the best areas to study phages in order to combat antimicrobial resistance.
  8. Huq AFMA, Biswas SK, Sheam MM, Syed SB, Elahi MT, Tang SS, et al.
    Biologia (Bratisl), 2023;78(3):873-885.
    PMID: 36573069 DOI: 10.1007/s11756-022-01299-x
    Bacillary dysentery is a type of dysentery and a severe form of shigellosis. This dysentery is usually restricted to Shigella infection, but Salmonella enterica and enteroinvasive Escherichia coli strains are also known as this infection's causative agents. The emergence of drug-resistant, bacillary dysentery-causing pathogens is a global burden, especially for developing countries with poor hygienic environments. This study aimed to isolate, identify, and determine the drug-resistant pattern of bacillary dysentery-causing pathogens from the stool samples of the Kushtia region in Bangladesh. Hence, biochemical tests, serotyping, molecular identification, and antibiotic profiling were performed to characterize the pathogens. Among one hundred fifty (150) stool samples, 18 enteric bacterial pathogens were isolated and identified, where 12 were Shigella strains, 5 were S. enterica sub spp. enterica strains and one was the E.coli strain. Among 12 Shigella isolates, 8 were Shigella flexneri 2a serotypes, and 4 were Shigella sonnei Phage-II serotypes. Except for three Salmonella strains, all isolated strains were drug-resistant (83%), whereas 50% were multidrug-resistant (MDR), an alarming issue for public health. In antibiotic-wise analysis, the isolated pathogens showed the highest resistance against nalidixic acid (77.78%), followed by tetracycline (38.89%), kanamycin (38.89%), amoxicillin (27.78%), streptomycin (27.78%), cefepime (22.22%), ceftriaxone (22.22%), ampicillin (16.67%), ciprofloxacin (16.67%), and chloramphenicol (16.67%). The existence of MDR organisms that cause bacillary dysentery in the Kushtia area would warn the public to be more health conscious, and physicians would administer medications cautiously. The gradual growth of MDR pathogenic microorganisms needs immediate attention, and the discovery of effective medications must take precedence.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11756-022-01299-x.

  9. Rosenthal VD, Yin R, Myatra SN, Divatia JV, Biswas SK, Shrivastava AM, et al.
    J Vasc Access, 2024 Mar 27.
    PMID: 38539085 DOI: 10.1177/11297298241242163
    BACKGROUND: Central line-associated bloodstream infection (CLABSI) rates in intensive care units (ICUs) across Latin America exceed those in high-income countries significantly.

    METHODS: We implemented the INICC multidimensional approach, incorporating an 11-component bundle, in 122 ICUs spanning nine Asian countries. We computed the CLABSI rate using the CDC/NSHN definition and criteria. The CLABSI rate per 1000 CL-days was calculated at baseline and throughout different phases of the intervention, including the 2nd month, 3rd month, 4-16 month, and 17-29 month periods. A two-sample t-test was employed to compare baseline CLABSI rates with intervention rates. Additionally, we utilized a generalized linear mixed model with a Poisson distribution to analyze the association between exposure and outcome.

    RESULTS: A total of 124,946 patients were hospitalized over 717,270 patient-days, with 238,595 central line (CL)-days recorded. The rates of CLABSI per 1000 CL-days significantly decreased from 16.64 during the baseline period to 6.51 in the 2nd month (RR = 0.39; 95% CI = 0.36-0.42; p 

  10. Rosenthal VD, Yin R, Rodrigues C, Myatra SN, Divatia JV, Biswas SK, et al.
    Am J Infect Control, 2023 Jul;51(7):751-757.
    PMID: 36400318 DOI: 10.1016/j.ajic.2022.11.005
    BACKGROUND: Ventilator associated pneumonia (VAP) rates in Asia are several times above those of US. The objective of this study is to identify VAP risk factors.

    METHODS: We conducted a prospective cohort study, between March 27, 2004 and November 2, 2022, in 279 ICUs of 95 hospitals in 44 cities in 9 Asian countries (China, India, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Sri Lanka, Thailand, Vietnam).

    RESULTS: 153,717 patients, followed during 892,996 patient-days, acquired 3,369 VAPs. We analyzed 10 independent variables. Using multiple logistic regression we identified following independent VAP RFs= Age, rising VAP risk 1% per year (aOR=1.01; 95%CI=1.00-1.01, P

  11. Rosenthal VD, Jin Z, Rodrigues C, Myatra SN, Divatia JV, Biswas SK, et al.
    Infect Control Hosp Epidemiol, 2023 Aug;44(8):1261-1266.
    PMID: 36278508 DOI: 10.1017/ice.2022.245
    OBJECTIVE: To identify risk factors for mortality in intensive care units (ICUs) in Asia.

    DESIGN: Prospective cohort study.

    SETTING: The study included 317 ICUs of 96 hospitals in 44 cities in 9 countries of Asia: China, India, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam.

    PARTICIPANTS: Patients aged >18 years admitted to ICUs.

    RESULTS: In total, 157,667 patients were followed during 957,517 patient days, and 8,157 HAIs occurred. In multiple logistic regression, the following variables were associated with an increased mortality risk: central-line-associated bloodstream infection (CLABSI; aOR, 2.36; P < .0001), ventilator-associated event (VAE; aOR, 1.51; P < .0001), catheter-associated urinary tract infection (CAUTI; aOR, 1.04; P < .0001), and female sex (aOR, 1.06; P < .0001). Older age increased mortality risk by 1% per year (aOR, 1.01; P < .0001). Length of stay (LOS) increased mortality risk by 1% per bed day (aOR, 1.01; P < .0001). Central-line days increased mortality risk by 2% per central-line day (aOR, 1.02; P < .0001). Urinary catheter days increased mortality risk by 4% per urinary catheter day (aOR, 1.04; P < .0001). The highest mortality risks were associated with mechanical ventilation utilization ratio (aOR, 12.48; P < .0001), upper middle-income country (aOR, 1.09; P = .033), surgical hospitalization (aOR, 2.17; P < .0001), pediatric oncology ICU (aOR, 9.90; P < .0001), and adult oncology ICU (aOR, 4.52; P < .0001). Patients at university hospitals had the lowest mortality risk (aOR, 0.61; P < .0001).

    CONCLUSIONS: Some variables associated with an increased mortality risk are unlikely to change, such as age, sex, national economy, hospitalization type, and ICU type. Some other variables can be modified, such as LOS, central-line use, urinary catheter use, and mechanical ventilation as well as and acquisition of CLABSI, VAE, or CAUTI. To reduce mortality risk, we shall focus on strategies to reduce LOS; strategies to reduce central-line, urinary catheter, and mechanical ventilation use; and HAI prevention recommendations.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links