Displaying all 7 publications

Abstract:
Sort:
  1. Cirera L, Huerta JM, Chirlaque MD, Overvad K, Lindström M, Regnér S, et al.
    Cancer Epidemiol Biomarkers Prev, 2019 06;28(6):1089-1092.
    PMID: 31160392 DOI: 10.1158/1055-9965.EPI-18-1153
    BACKGROUND: To analyze the potential effect of social inequality on pancreatic cancer risk in Western Europe, by reassessing the association within the European Prospective Investigation into Cancer and Nutrition (EPIC) Study, including a larger number of cases and an extended follow-up.

    METHODS: Data on highest education attained were gathered for 459,170 participants (70% women) from 10 European countries. A relative index of inequality (RII) based on adult education was calculated for comparability across countries and generations. Cox regression models were applied to estimate relative inequality in pancreatic cancer risk, stratifying by age, gender, and center, and adjusting for known pancreatic cancer risk factors.

    RESULTS: A total of 1,223 incident pancreatic cancer cases were included after a mean follow-up of 13.9 (±4.0) years. An inverse social trend was found in models adjusted for age, sex, and center for both sexes [HR of RII, 1.27; 95% confidence interval (CI), 1.02-1.59], which was also significant among women (HR, 1.42; 95% CI, 1.05-1.92). Further adjusting by smoking intensity, alcohol consumption, body mass index, prevalent diabetes, and physical activity led to an attenuation of the RII risk and loss of statistical significance.

    CONCLUSIONS: The present reanalysis does not sustain the existence of an independent social inequality influence on pancreatic cancer risk in Western European women and men, using an index based on adult education, the most relevant social indicator linked to individual lifestyles, in a context of very low pancreatic cancer survival from (quasi) universal public health systems.

    IMPACT: The results do not support an association between education and risk of pancreatic cancer.

  2. Landais E, Moskal A, Mullee A, Nicolas G, Gunter MJ, Huybrechts I, et al.
    Nutrients, 2018 Jun 05;10(6).
    PMID: 29874819 DOI: 10.3390/nu10060725
    BACKGROUND: Coffee and tea are among the most commonly consumed nonalcoholic beverages worldwide, but methodological differences in assessing intake often hamper comparisons across populations. We aimed to (i) describe coffee and tea intakes and (ii) assess their contribution to intakes of selected nutrients in adults across 10 European countries.

    METHOD: Between 1995 and 2000, a standardized 24-h dietary recall was conducted among 36,018 men and women from 27 European Prospective Investigation into Cancer and Nutrition (EPIC) study centres. Adjusted arithmetic means of intakes were estimated in grams (=volume) per day by sex and centre. Means of intake across centres were compared by sociodemographic characteristics and lifestyle factors.

    RESULTS: In women, the mean daily intake of coffee ranged from 94 g/day (~0.6 cups) in Greece to 781 g/day (~4.4 cups) in Aarhus (Denmark), and tea from 14 g/day (~0.1 cups) in Navarra (Spain) to 788 g/day (~4.3 cups) in the UK general population. Similar geographical patterns for mean daily intakes of both coffee and tea were observed in men. Current smokers as compared with those who reported never smoking tended to drink on average up to 500 g/day more coffee and tea combined, but with substantial variation across centres. Other individuals' characteristics such as educational attainment or age were less predictive. In all centres, coffee and tea contributed to less than 10% of the energy intake. The greatest contribution to total sugar intakes was observed in Southern European centres (up to ~20%).

    CONCLUSION: Coffee and tea intake and their contribution to energy and sugar intake differed greatly among European adults. Variation in consumption was mostly driven by geographical region.

  3. Aleksandrova K, Bamia C, Drogan D, Lagiou P, Trichopoulou A, Jenab M, et al.
    Am J Clin Nutr, 2015 Dec;102(6):1498-508.
    PMID: 26561631 DOI: 10.3945/ajcn.115.116095
    BACKGROUND: Higher coffee intake has been purportedly related to a lower risk of liver cancer. However, it remains unclear whether this association may be accounted for by specific biological mechanisms.

    OBJECTIVE: We aimed to evaluate the potential mediating roles of inflammatory, metabolic, liver injury, and iron metabolism biomarkers on the association between coffee intake and the primary form of liver cancer-hepatocellular carcinoma (HCC).

    DESIGN: We conducted a prospective nested case-control study within the European Prospective Investigation into Cancer and Nutrition among 125 incident HCC cases matched to 250 controls using an incidence-density sampling procedure. The association of coffee intake with HCC risk was evaluated by using multivariable-adjusted conditional logistic regression that accounted for smoking, alcohol consumption, hepatitis infection, and other established liver cancer risk factors. The mediating effects of 21 biomarkers were evaluated on the basis of percentage changes and associated 95% CIs in the estimated regression coefficients of models with and without adjustment for biomarkers individually and in combination.

    RESULTS: The multivariable-adjusted RR of having ≥4 cups (600 mL) coffee/d compared with <2 cups (300 mL)/d was 0.25 (95% CI: 0.11, 0.62; P-trend = 0.006). A statistically significant attenuation of the association between coffee intake and HCC risk and thereby suspected mediation was confirmed for the inflammatory biomarker IL-6 and for the biomarkers of hepatocellular injury glutamate dehydrogenase, alanine aminotransferase, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and total bilirubin, which-in combination-attenuated the regression coefficients by 72% (95% CI: 7%, 239%). Of the investigated biomarkers, IL-6, AST, and GGT produced the highest change in the regression coefficients: 40%, 56%, and 60%, respectively.

    CONCLUSION: These data suggest that the inverse association of coffee intake with HCC risk was partly accounted for by biomarkers of inflammation and hepatocellular injury.

  4. Bhoo-Pathy N, Peeters PH, Uiterwaal CS, Bueno-de-Mesquita HB, Bulgiba AM, Bech BH, et al.
    Breast Cancer Res, 2015 Jan 31;17:15.
    PMID: 25637171 DOI: 10.1186/s13058-015-0521-3
    INTRODUCTION: Specific coffee subtypes and tea may impact risk of pre- and post-menopausal breast cancer differently. We investigated the association between coffee (total, caffeinated, decaffeinated) and tea intake and risk of breast cancer.

    METHODS: A total of 335,060 women participating in the European Prospective Investigation into Nutrition and Cancer (EPIC) Study, completed a dietary questionnaire from 1992 to 2000, and were followed-up until 2010 for incidence of breast cancer. Hazard ratios (HR) of breast cancer by country-specific, as well as cohort-wide categories of beverage intake were estimated.

    RESULTS: During an average follow-up of 11 years, 1064 premenopausal, and 9134 postmenopausal breast cancers were diagnosed. Caffeinated coffee intake was associated with lower risk of postmenopausal breast cancer: adjusted HR=0.90, 95% confidence interval (CI): 0.82 to 0.98, for high versus low consumption; Ptrend=0.029. While there was no significant effect modification by hormone receptor status (P=0.711), linear trend for lower risk of breast cancer with increasing caffeinated coffee intake was clearest for estrogen and progesterone receptor negative (ER-PR-), postmenopausal breast cancer (P=0.008). For every 100 ml increase in caffeinated coffee intake, the risk of ER-PR- breast cancer was lower by 4% (adjusted HR: 0.96, 95% CI: 0.93 to 1.00). Non-consumers of decaffeinated coffee had lower risk of postmenopausal breast cancer (adjusted HR=0.89; 95% CI: 0.80 to 0.99) compared to low consumers, without evidence of dose-response relationship (Ptrend=0.128). Exclusive decaffeinated coffee consumption was not related to postmenopausal breast cancer risk, compared to any decaffeinated-low caffeinated intake (adjusted HR=0.97; 95% CI: 0.82 to 1.14), or to no intake of any coffee (HR: 0.96; 95%: 0.82 to 1.14). Caffeinated and decaffeinated coffee were not associated with premenopausal breast cancer. Tea intake was neither associated with pre- nor post-menopausal breast cancer.

    CONCLUSIONS: Higher caffeinated coffee intake may be associated with lower risk of postmenopausal breast cancer. Decaffeinated coffee intake does not seem to be associated with breast cancer.

  5. Freisling H, Pisa PT, Ferrari P, Byrnes G, Moskal A, Dahm CC, et al.
    Eur J Nutr, 2016 Sep;55(6):2093-104.
    PMID: 26303194 DOI: 10.1007/s00394-015-1023-x
    PURPOSE: Various food patterns have been associated with weight change in adults, but it is unknown which combinations of nutrients may account for such observations. We investigated associations between main nutrient patterns and prospective weight change in adults.

    METHODS: This study includes 235,880 participants, 25-70 years old, recruited between 1992 and 2000 in 10 European countries. Intakes of 23 nutrients were estimated from country-specific validated dietary questionnaires using the harmonized EPIC Nutrient DataBase. Four nutrient patterns, explaining 67 % of the total variance of nutrient intakes, were previously identified from principal component analysis. Body weight was measured at recruitment and self-reported 5 years later. The relationship between nutrient patterns and annual weight change was examined separately for men and women using linear mixed models with random effect according to center controlling for confounders.

    RESULTS: Mean weight gain was 460 g/year (SD 950) and 420 g/year (SD 940) for men and women, respectively. The annual differences in weight gain per one SD increase in the pattern scores were as follows: principal component (PC) 1, characterized by nutrients from plant food sources, was inversely associated with weight gain in men (-22 g/year; 95 % CI -33 to -10) and women (-18 g/year; 95 % CI -26 to -11). In contrast, PC4, characterized by protein, vitamin B2, phosphorus, and calcium, was associated with a weight gain of +41 g/year (95 % CI +2 to +80) and +88 g/year (95 % CI +36 to +140) in men and women, respectively. Associations with PC2, a pattern driven by many micro-nutrients, and with PC3, a pattern driven by vitamin D, were less consistent and/or non-significant.

    CONCLUSIONS: We identified two main nutrient patterns that are associated with moderate but significant long-term differences in weight gain in adults.

  6. Zamora-Ros R, Alghamdi MA, Cayssials V, Franceschi S, Almquist M, Hennings J, et al.
    Eur J Nutr, 2019 Dec;58(8):3303-3312.
    PMID: 30535794 DOI: 10.1007/s00394-018-1874-z
    PURPOSE: Coffee and tea constituents have shown several anti-carcinogenic activities in cellular and animal studies, including against thyroid cancer (TC). However, epidemiological evidence is still limited and inconsistent. Therefore, we aimed to investigate this association in a large prospective study.

    METHODS: The study was conducted in the EPIC (European Prospective Investigation into Cancer and Nutrition) cohort, which included 476,108 adult men and women. Coffee and tea intakes were assessed through validated country-specific dietary questionnaires.

    RESULTS: During a mean follow-up of 14 years, 748 first incident differentiated TC cases (including 601 papillary and 109 follicular TC) were identified. Coffee consumption (per 100 mL/day) was not associated either with total differentiated TC risk (HRcalibrated 1.00, 95% CI 0.97-1.04) or with the risk of TC subtypes. Tea consumption (per 100 mL/day) was not associated with the risk of total differentiated TC (HRcalibrated 0.98, 95% CI 0.95-1.02) and papillary tumor (HRcalibrated 0.99, 95% CI 0.95-1.03), whereas an inverse association was found with follicular tumor risk (HRcalibrated 0.90, 95% CI 0.81-0.99), but this association was based on a sub-analysis with a small number of cancer cases.

    CONCLUSIONS: In this large prospective study, coffee and tea consumptions were not associated with TC risk.

  7. Freisling H, Noh H, Slimani N, Chajès V, May AM, Peeters PH, et al.
    Eur J Nutr, 2018 Oct;57(7):2399-2408.
    PMID: 28733927 DOI: 10.1007/s00394-017-1513-0
    PURPOSE: There is inconsistent evidence regarding the relationship between higher intake of nuts, being an energy-dense food, and weight gain. We investigated the relationship between nut intake and changes in weight over 5 years.

    METHODS: This study includes 373,293 men and women, 25-70 years old, recruited between 1992 and 2000 from 10 European countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Habitual intake of nuts including peanuts, together defined as nut intake, was estimated from country-specific validated dietary questionnaires. Body weight was measured at recruitment and self-reported 5 years later. The association between nut intake and body weight change was estimated using multilevel mixed linear regression models with center/country as random effect and nut intake and relevant confounders as fixed effects. The relative risk (RR) of becoming overweight or obese after 5 years was investigated using multivariate Poisson regressions stratified according to baseline body mass index (BMI).

    RESULTS: On average, study participants gained 2.1 kg (SD 5.0 kg) over 5 years. Compared to non-consumers, subjects in the highest quartile of nut intake had less weight gain over 5 years (-0.07 kg; 95% CI -0.12 to -0.02) (P trend = 0.025) and had 5% lower risk of becoming overweight (RR 0.95; 95% CI 0.92-0.98) or obese (RR 0.95; 95% CI 0.90-0.99) (both P trend <0.008).

    CONCLUSIONS: Higher intake of nuts is associated with reduced weight gain and a lower risk of becoming overweight or obese.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links