MATERIALS AND METHODS: We evaluated simple statistics and published model-based approaches. Multiplex-qPCR was conducted to determine the expression of 24 candidate RG in AMLs (N=9). Singleplex-qPCR was carried out on selected RG (SRP14, B2M and ATP5B) and genes of interest in AML (N=15) and healthy controls, HC (N=12).
RESULTS: RG expression levels in AML samples were highly variable and coefficient of variance (CV) ranged from 0.37% to 10.17%. Analysis using GeNorm and Normfinder listed different orders of most stable genes but the top seven (ACTB, UBE2D2, B2M, NF45, RPL37A, GK, QARS) were the same. In singleplex-qPCR, SRP14 maintained the lowest CV in AML samples. B2M, one of most stable reference genes in AML, was expressed near significantly different in AML and HC. GeNorm selected ATP5B+SRP14 while Normfinder chose SRP14+B2M as the best two RG in combination. The median expressions of combined RG genes in AML compared to HC were less significantly different than individually implying smaller expression variation after combination. Genes of interest normalised with RG in combination or individually, displayed significantly different expression patterns.
CONCLUSIONS: The selection of best reference gene in qPCR must consider all sample sets. Model-based approaches are important in large candidate gene analysis. This study showed combination of RG SRP14+B2M was the most suitable normalisation factor for qPCR analysis of AML and healthy individuals.
Methods: This was a retrospective epidemiological study involving all cases of TMA from 2012-2016.
Results: We evaluated 243 patients with a median age of 34.2 years; 57.6% were female. Majority of the patients were Malay (62.5%), followed by Chinese (23.5%) and Indian (8.6%). The proportion of patients with thrombotic thrombocytopenic purpura (TTP) was 20.9%, 72.2% of which were acquired while 27.8% were congenital. Patients with ADAMTS-13 activity ≥5% had a four-fold higher odds of mortality compared to those with ADAMTS-13 activity <5% (odds ratio: 4.133, P=0.0425). The mortality rate was 22.6% (N=55). Most cases had secondary etiologies (42.5%), followed by acquired TTP (16.6%), atypical hemolytic uremic syndrome (HUS) or HUS (12.8%) and congenital TTP (6.4%). Patients with secondary TMA had inferior overall survival (P=0.0387). The secondary causes comprised systemic lupus erythematosus (30%), infection (29%), pregnancy (10%), transplant (8%), malignancy (6%), and drugs (3%). Transplant-associated TMA had the worst OS (P=0.0016) among the secondary causes. Plasma exchange, methylprednisolone and intravenous immunoglobulin were recorded as first-line treatments in 162 patients, while rituximab, bortezomib, vincristine, azathioprine, cyclophosphamide, cyclosporine, and tacrolimus were described in 78 patients as second-line treatment.
Conclusion: This study showed that TMA without ADAMTS-13 deficiency yielded inferior outcomes compared to TMA with severeADAMTS-13 deficiency, although this difference was not statistically significant.
METHODS: A parallel RCT was conducted in two hospitals in Malaysia, where 129 CML patients were randomised to MMS or control (usual care) groups using a stratified 1:1 block randomisation method. The 6-month MMS included three face-to-face medication use reviews, CML and TKI-related education, two follow-up telephone conversations, a printed information booklet and two adherence aids. Medication adherence (primary outcome), molecular responses and health-related quality of life (HRQoL) scores were assessed at baseline, 6th and 12th month. Medication adherence and HRQoL were assessed using medication possession ratio and the European Organisation for Research and Treatment in Cancer questionnaire (EORTC_QLQ30_CML24) respectively.
RESULTS: The MMS group (n = 65) showed significantly higher adherence to TKIs than the control group (n = 64) at 6th month (81.5% vs 56.3%; p = 0.002), but not at 12th month (72.6% vs 60.3%; p = 0.147). In addition, a significantly higher proportion of participants in the MMS group achieved major molecular response at 6th month (58.5% vs 35.9%; p = 0.010), but not at 12th month (66.2% vs 51.6%; p = 0.092). Significant deep molecular response was also obtained at 12th month (24.6% vs 10.9%; p = 0.042). Six out of 20 subscales of EORTC-QLQ30-CML24 were significantly better in the MMS group.
CONCLUSIONS: The MMS improved CML patients' adherence to TKI as well as achieved better clinical outcomes.
TRIAL REGISTRATION: Clinicaltrial.gov (ID: NCT03090477).
METHODS: This study included participants from the intervention arm of a randomised controlled trial which was conducted to evaluate the effects of pharmacist-led interventions on CML patients treated with TKIs. Participants were recruited and followed up in the haematology clinics of two hospitals in Malaysia from March 2017 to January 2019. A pharmacist identified DRPs and helped to resolve them. Patients were followed-up for six months, and their DRPs were assessed based on the Pharmaceutical Care Network Europe Classification for DRP v7.0. The identified DRPs, the pharmacist's interventions, and the acceptance and outcomes of the interventions were recorded. A Poisson multivariable regression model was used to analyse factors associated with the number of identified DRPs per participant.
RESULTS: A total of 198 DRPs were identified from 65 CML patients. The median number of DRPs per participants was 3 (interquartile range: 2, 4). Most participants (97%) had at least one DRP, which included adverse drug events (45.5%), treatment ineffectiveness (31.5%) and patients' treatment concerns or dissatisfaction (23%). The 228 causes of DRPs identified comprised the following: lack of disease or treatment information, or outcome monitoring (47.8%), inappropriate drug use processes (23.2%), inappropriate patient behaviour (19.9%), suboptimal drug selection (6.1%), suboptimal dose selection (2.6%) and logistic issues in dispensing (0.4%). The number of concomitant medications was significantly associated with the number of DRPs (adjusted Odds Ratio: 1.100; 95% CI: 1.005, 1.205; p = 0.040). Overall, 233 interventions were made. These included providing patient education on disease states or TKI-related side effects (75.1%) and recommending appropriate instructions for taking medications (7.7%). Of the 233 interventions, 94.4% were accepted and 83.7% were implemented by the prescriber or patient. A total of 154 DRPs (77.3%) were resolved.
CONCLUSIONS: The pharmacist-led interventions among CML patients managed to identify various DRPs, were well accepted by both TKI prescribers and patients, and had a high success rate of resolving the DRPs.