Displaying all 16 publications

Abstract:
Sort:
  1. Lan YW, Chen CM, Chong KY
    Methods Mol Biol, 2021;2269:83-92.
    PMID: 33687673 DOI: 10.1007/978-1-0716-1225-5_6
    A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-β1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.
  2. Chong KY, Chin NL, Yusof YA
    Food Sci Technol Int, 2017 Oct;23(7):608-622.
    PMID: 28614964 DOI: 10.1177/1082013217713331
    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.
  3. Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, et al.
    Int J Biochem Cell Biol, 2014 Aug;53:55-65.
    PMID: 24814288 DOI: 10.1016/j.biocel.2014.04.011
    Multidrug-resistant (MDR) cancer is a major clinical problem in chemotherapy of cancer patients. We have noted inappropriate PKCδ hypomethylation and overexpression of genes in the PKCδ/AP-1 pathway in the human uterus sarcoma drug-resistant cell line, MES-SA/Dx5 cells, which also overexpress p-glycoprotein (ABCB1). Recent studies have indicated that FZD1 is overexpressed in both multidrug-resistant cancer cell lines and in clinical tumor samples. These data have led us to hypothesize that the FZD1-mediated PKCδ signal-transduction pathway may play an important role in drug resistance in MES-SA/Dx5 cells. In this work, the PKCδ inhibitor Rottlerin was found to reduce ABCB1 expression and to inhibit the MDR drug pumping ability in the MES-SA/Dx5 cells when compared with the doxorubicin-sensitive parental cell line, MES-SA. PKCδ was up-regulated with concurrent up-regulation of the mRNA levels of the AP-1-related factors, c-JUN and c-FOS. Activation of AP-1 also correlated with up-regulation of the AP-1 downstream genes HGF and EGR1. Furthermore, AP-1 activities were reduced and the AP-1 downstream genes were down-regulated in Rottlerin-treated or PKCδ shRNA-transfected cells. MES-SA/Dx5 cells were resensitized to doxorubicin-induced toxicity by co-treatment with doxorubicin and Rottlerin or PKCδ shRNA. In addition, cell viability and drug pump-out ability were significantly reduced in the FZD1 inhibitor curcumin-treated and FZD1 shRNA-knockdown MES-SA/Dx5 cells, indicating involvement of PKCδ in FZD1-modulated ABCB1 expression pathway. Taken together, our data demonstrate that FZD1 regulates PKCδ, and the PKCδ/AP-1 signalling transduction pathway plays an important role in drug resistance in MES-SA/Dx5 cells.
  4. Kew Y, Chia YL, Lai SM, Chong KY, Ho XL, Liew DW, et al.
    Med J Malaysia, 2015 Apr;70(2):86-92.
    PMID: 26162383 MyJurnal
    INTRODUCTION: Cardiovascular diseases are the main cause of morbidity and mortality in Malaysia. There is evidence of high traditional and complementary medicine (TCM) use among population with cardiovascular risk and there have been anecdotal reports about substitution of conventional medicines with TCM. We investigated the prevalence of TCM use, treatment preference and substitution of conventional medicines in study population with cardiovascular risk factors in Pahang, Malaysia.

    METHODS: A cross-sectional survey was conducted using an interviewer-administered questionnaire in five districts of Pahang. A total of 1250 households were chosen through proportionate and systematic sampling. Respondents aged 18 years and above were selected.

    RESULTS: The study population with cardiovascular risk factors who used TCM was higher than the general population (31.7% versus 25.9%). There were no clear preferences in using TCM by gender, age groups, educational level and income even though other bumiputeras showed a slight inclination towards TCM use. Among the study population with cardiovascular risk factors who consumed TCM, 20-30% of them were using TCM as a substitute for their conventional medications. Respondents from the younger age group (18-40 years) (57.1%), highest educational level (43.2%), other bumiputeras (38.4%) and highest income group (31.4%) preferred the combination of both conventional and traditional medicine.

    CONCLUSION: TCM use among population with cardiovascular risk factors is high. The high preference for combination therapy of TCM and conventional medications among young adults and the use of TCM to substitute conventional medications show that much research is needed to provide proven TCM therapies to avoid self-mismanagement of cardiovascular risk in Malaysia.
  5. Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, et al.
    J Biomed Sci, 2018 Jul 19;25(1):57.
    PMID: 30025541 DOI: 10.1186/s12929-018-0461-1
    BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking.

    METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis.

    RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation.

    CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.

  6. Lan YW, Theng SM, Huang TT, Choo KB, Chen CM, Kuo HP, et al.
    Stem Cells Transl Med, 2017 03;6(3):1006-1017.
    PMID: 28297588 DOI: 10.5966/sctm.2016-0054
    Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti-inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM-preconditioned MSCs. OSM-preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM-preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor-β1- or OSM-induced extracellular matrix production in MRC-5 fibroblasts through paracrine effects. In bleomycin-induced lung fibrotic mice, transplantation of OSM-preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ-tagged MSCs were detected in the lung tissues of the OSM-preconditioned MSC-treated mice 18 days after post-transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM-preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine 2017;6:1006-1017.
  7. Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY
    Int J Mol Sci, 2022 Nov 28;23(23).
    PMID: 36499211 DOI: 10.3390/ijms232314884
    E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
  8. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
  9. Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, et al.
    Stem Cell Res Ther, 2019 06 13;10(1):163.
    PMID: 31196196 DOI: 10.1186/s13287-019-1282-1
    INTRODUCTION: Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs).

    METHODS: Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration.

    RESULTS: An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups.

    CONCLUSION: Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.

  10. Huang TT, Lan YW, Chen CM, Ko YF, Ojcius DM, Martel J, et al.
    Sci Rep, 2019 03 26;9(1):5145.
    PMID: 30914735 DOI: 10.1038/s41598-019-41653-9
    We examined the effects of an Antrodia cinnamomea ethanol extract (ACEE) on lung cancer cells in vitro and tumor growth in vivo. ACEE produced dose-dependent cytotoxic effects and induced apoptosis in Lewis lung carcinoma (LLC) cells. ACEE treatment increased expression of p53 and Bax, as well as cleavage of caspase-3 and PARP, while reducing expression of survivin and Bcl-2. ACEE also reduced the levels of JAK2 and phosphorylated STAT3 in LLC cells. In a murine allograft tumor model, oral administration of ACEE significantly inhibited LLC tumor growth and metastasis without affecting serum biological parameters or body weight. ACEE increased cleavage of caspase-3 in murine tumors, while decreasing STAT3 phosphorylation. In addition, ACEE reduced the growth of human tumor xenografts in nude mice. Our findings therefore indicate that ACEE inhibits lung tumor growth and metastasis by inducing apoptosis and by inhibiting the STAT3 signaling pathway in cancer cells.
  11. Huang TT, Chen CM, Lin SS, Lan YW, Cheng HC, Choo KB, et al.
    Int J Mol Sci, 2023 May 31;24(11).
    PMID: 37298555 DOI: 10.3390/ijms24119606
    E7050 is an inhibitor of VEGFR2 with anti-tumor activity; however, its therapeutic mechanism remains incompletely understood. In the present study, we aim to evaluate the anti-angiogenic activity of E7050 in vitro and in vivo and define the underlying molecular mechanism. It was observed that treatment with E7050 markedly inhibited proliferation, migration, and capillary-like tube formation in cultured human umbilical vein endothelial cells (HUVECs). E7050 exposure in the chick embryo chorioallantoic membrane (CAM) also reduced the amount of neovessel formation in chick embryos. To understand the molecular basis, E7050 was found to suppress the phosphorylation of VEGFR2 and its downstream signaling pathway components, including PLCγ1, FAK, Src, Akt, JNK, and p38 MAPK in VEGF-stimulated HUVECs. Moreover, E7050 suppressed the phosphorylation of VEGFR2, FAK, Src, Akt, JNK, and p38 MAPK in HUVECs exposed to MES-SA/Dx5 cells-derived conditioned medium (CM). The multidrug-resistant human uterine sarcoma xenograft study revealed that E7050 significantly attenuated the growth of MES-SA/Dx5 tumor xenografts, which was associated with inhibition of tumor angiogenesis. E7050 treatment also decreased the expression of CD31 and p-VEGFR2 in MES-SA/Dx5 tumor tissue sections in comparison with the vehicle control. Collectively, E7050 may serve as a potential agent for the treatment of cancer and angiogenesis-related disorders.
  12. Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WT, et al.
    Cell Stress Chaperones, 2015 Nov;20(6):979-89.
    PMID: 26243699 DOI: 10.1007/s12192-015-0627-7
    Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
  13. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
  14. Hung TH, Li YH, Tseng CP, Lan YW, Hsu SC, Chen YH, et al.
    Cancer Gene Ther, 2015 May;22(5):262-70.
    PMID: 25908454 DOI: 10.1038/cgt.2015.15
    Inappropriate c-MET signaling in cancer can enhance tumor cell proliferation, survival, motility, and invasion. Inhibition of c-MET signaling induces apoptosis in a variety of cancers. It has also been recognized as a novel anticancer therapy approach. Furthermore, reports have also indicated that constitutive expression of P-glycoprotein (ABCB1) is involved in the HGF/c-MET-related pathway of multidrug resistance ABCB1-positive human hepatocellular carcinoma cell lines. We previously reported that elevated expression levels of PKCδ and AP-1 downstream genes, and HGF receptor (c-MET) and ABCB1, in the drug-resistant MES-SA/Dx5 cells. Moreover, leukemia cell lines overexpressing ABCB1 have also been shown to be more resistant to the tyrosine kinase inhibitor imatinib mesylate. These findings suggest that chemoresistant cancer cells may also develop a similar mechanism against chemotherapy agents. To circumvent clinical complications arising from drug resistance during cancer therapy, the present study was designed to investigate apoptosis induction in ABCB1-overexpressed cancer cells using c-MET-targeted RNA interference technology in vitro and in vivo. The results showed that cell viability decreased and apoptosis rate increased in c-MET shRNA-transfected HGF/c-MET pathway-positive MES-SA/Dx5 and MCF-7/ADR2 cell lines in a dose-dependent manner. In vivo reduction of tumor volume in mice harboring c-MET shRNA-knockdown MES-SA/Dx5 cells was clearly demonstrated. Our study demonstrated that downregulation of c-MET by shRNA-induced apoptosis in a multidrug resistance cell line.
  15. Lim VC, Sing KW, Chong KY, Jaturas N, Dong H, Lee PS, et al.
    R Soc Open Sci, 2022 Nov;9(11):220161.
    PMID: 36405642 DOI: 10.1098/rsos.220161
    Perceptions of, and attitudes toward, wildlife are influenced by exposure to, and direct experiences with, nature. Butterflies are a conspicuous and ubiquitous component of urban nature across megacities that are highly urbanized with little opportunity for human-nature interactions. We evaluated public familiarity with, perceptions of and attitudes toward butterflies across nine megacities in East and Southeast Asia through face-to-face interviews with 1774 urban park users. A total of 79% of respondents had seen butterflies in their cities mostly in urban parks, indicating widespread familiarity with butterflies. Those who had seen butterflies also had higher perceptions of butterflies, whereas greater than 50% of respondents had positive attitudes toward butterflies. Frequent visits to natural places in urban neighbourhoods was associated with (i) sightings of caterpillars, indicating increased familiarity with urban wildlife, and (ii) increased connectedness to nature. We found two significant positive relationships: (i) between connectedness to nature and attitudes toward butterflies and (ii) between connectedness to nature and perceptions of butterflies, firmly linking parks users' thoughts and feelings about butterflies with their view of nature. This suggests that butterflies in urban parks can play a key role in building connectedness to nature and consequently pro-environmental behaviours and support for wildlife conservation among urban residents.
  16. Chisholm RA, Kristensen NP, Rheindt FE, Chong KY, Ascher JS, Lim KKP, et al.
    Proc Natl Acad Sci U S A, 2023 Dec 19;120(51):e2309034120.
    PMID: 38079550 DOI: 10.1073/pnas.2309034120
    There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links