Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chuah LH, Roberts CJ, Billa N, Abdullah S, Rosli R
    Colloids Surf B Biointerfaces, 2014 Apr 1;116:228-36.
    PMID: 24486834 DOI: 10.1016/j.colsurfb.2014.01.007
    Curcumin, which is derived from turmeric has gained much attention in recent years for its anticancer activities against various cancers. However, due to its poor absorption, rapid metabolism and elimination, curcumin has a very low oral bioavailability. Therefore, we have formulated mucoadhesive nanoparticles to deliver curcumin to the colon, such that prolonged contact between the nanoparticles and the colon leads to a sustained level of curcumin in the colon, improving the anticancer effect of curcumin on colorectal cancer. The current work entails the ex vivo mucoadhesion study of the formulated nanoparticles and the in vitro effect of mucoadhesive interaction between the nanoparticles and colorectal cancer cells. The ex vivo study showed that curcumin-containing chitosan nanoparticles (CUR-CS-NP) have improved mucoadhesion compared to unloaded chitosan nanoparticles (CS-NP), suggesting that curcumin partly contributes to the mucoadhesion process. This may lead to an enhanced anticancer effect of curcumin when formulated in CUR-CS-NP. Our results show that CUR-CS-NP are taken up to a greater extent by colorectal cancer cells, compared to free curcumin. The prolonged contact offered by the mucoadhesion of CUR-CS-NP onto the cells resulted in a greater reduction in percentage cell viability as well as a lower IC50, indicating a potential improved treatment outcome. The formulation and free curcumin appeared to induce cell apoptosis in colorectal cancer cells, by arresting the cell cycle at G2/M phase. The superior anticancer effects exerted by CUR-CS-NP indicated that this could be a potential treatment for colorectal cancer.
  2. De Silva L, Chuah LH, Meganathan P, Fu JY
    Biofactors, 2016 Mar-Apr;42(2):149-62.
    PMID: 26948691 DOI: 10.1002/biof.1259
    Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3). Despite sharing structural similarities with tocopherols, T3 strive to gain scientific prominence due to their anti-cancer effects. Recent studies have shed some light on the anti-metastatic properties of T3. In this review, the roles of T3 in each step of the metastatic process are discussed. During the invasion process, signaling pathways that regulate the extracellular matrix and tumor cell motility have been reported to be modulated by T3. Although studies on T3 and tumor cell migration are fairly limited, they were shown to play a vital role in the suppression of angiogenesis. Furthermore, the anti-inflammatory effect of T3 could be highly promising in the regulation of tumor microenvironment, which is crucial in supporting tumor growth in distant organs. © 2016 BioFactors, 42(2):149-162, 2016.
  3. Saw PS, Chuah LH, Lee SWH
    Int J Clin Pharm, 2018 Oct;40(5):1131-1136.
    PMID: 30078173 DOI: 10.1007/s11096-018-0707-8
    Background Pharmacists as highly qualified professionals face ethical dilemmas and conflicts in their daily practice. These issues manifest themselves in the daily practice of pharmacists, which require pharmacists to have the competencies to manage these dilemmas but there is limited formal training in ethical decision making during undergraduate pharmacy education. Objective To describe the implementation and evaluation of a methodological approach to managing ethical dilemma workshop for community pharmacists in Malaysia. Setting Community pharmacists in Klang Valley, Malaysia. Method During the workshop, pharmacists were provided insights into how they could use and apply a methodological approach towards managing a dilemma, followed by a case study and panel discussion. All participants were invited to complete a pre- and post-workshop questionnaire Main outcome measure Number and proportion of respondents answering questions related to practice of ethics and workshop effectiveness Results A total of 37 participants attended the workshop. Most of the participants reported that they had no formal training in professional ethics and often used their own approach to solve an ethical issue. Some of the most common issues mentioned include changing medication to generic. More than three quarter of participants agreed and strongly agreed the content was relevant to their job and they will be able to use what they learned in the program. Conclusion The evidence suggests that a module in ethical decision making should be introduced to community pharmacists in Malaysia. This module can be easily adapted for use in other countries and will help ensure that pharmacist can make a good professional judgement and deliver the deeds of beneficence to all their patients.
  4. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S
    Pharm Dev Technol, 2013 May-Jun;18(3):591-9.
    PMID: 22149945 DOI: 10.3109/10837450.2011.640688
    In the present study, we investigate the mucoadhesive characteristics and release of the anticancer agent curcumin, contained in chitosan nanoparticles (CS-NPs). Such a system has potential therapeutic benefits in the treatment of colon cancer through prolonged retention and delivery. The CS-NPs were ionically gelled with tripolyphosphate (TPP) and registered an isoelectric pH of 6.2 (z-average diameter of 214 nm ± 1.0 nm). pH variations around the isoelectric point caused a reduction in CS-NPs electrical charge which correspondingly increased the z-average due to agglomeration. Curcumin release from CS-NPs was slowest at chitosan to TPP weight ratio of 3:1, with a significant retention (36%) at the end of 6 h. Adsorption isotherms of mucin on CS-NPs fitted both the Freundlich and Langmuir models, suggesting a monolayer-limited adsorption on heterogeneous sites with varied affinities. Encapsulated curcumin exerted an influence on the adsorption of mucin due to H-bonding as well as π-π interactions between the phenolic moieties of curcumin and mucin.
  5. Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT
    J Biomol Struct Dyn, 2020 Nov 08.
    PMID: 33164654 DOI: 10.1080/07391102.2020.1844059
    G protein-coupled receptors (GPCRs) belong to the largest family of protein targets comprising over 800 members in which at least 500 members are the therapeutic targets. Among the GPCRs, G protein-coupled estrogen receptor-1 (GPER-1) has shown to have the ability in estrogen signaling. As GPER-1 plays a critical role in several physiological responses, GPER-1 has been considered as a potential therapeutic target to treat estrogen-based cancers and other non-communicable diseases. However, the progress in the understanding of GPER-1 structure and function is relatively slow due to the availability of a only a few selective GPER-1 modulators. As with many GPCRs, the X-ray crystal structure of GPER-1 is yet to be resolved and thus has led the researchers to search for new GPER-1 modulators using homology models of GPER-1. In this review, we aim to summarize various approaches used in the generation of GPER-1 homology model and their applications that have resulted in new GPER-1 ligands.
  6. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC
    Crit Rev Oncol Hematol, 2018 Jan;121:11-22.
    PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010
    E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
  7. Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, et al.
    Crit Rev Oncol Hematol, 2019 Nov;143:81-94.
    PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008
    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
  8. Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT
    J Biomol Struct Dyn, 2020 Oct 15.
    PMID: 33054574 DOI: 10.1080/07391102.2020.1830853
    Cancer ranks in second place among the cause of death worldwide. Cancer progress in multiple stages of carcinogenesis and metastasis programs through complex pathways. Sex hormones and their receptors are the major factors in promoting cancer progression. Among them, G protein-coupled estrogen receptor-1 (GPER) has shown to mediate cellular signaling pathways and cancer cell proliferation. However, the lack of GPER protein structure limited the search for new modulators. In this study, we curated an extensive database of natural products to discover new potential GPER modulators. We used a combination of virtual screening techniques to generate a homology model of GPER and subsequently used that for the screening of 30,926 natural products from a public database to identify potential active modulators of GPER. The best hits were further screened through the ADMET filter and confirmed by docking analysis. Moreover, molecular dynamics simulations of best hits were also carried out to assess the stability of the ligand-GPER complex. This study predicted several potential GPER modulators with novel scaffolds that could be further investigated and used as the core for the development of novel GPER modulators.Communicated by Ramaswamy H. Sarma.
  9. Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC
    Curr Cancer Drug Targets, 2019;19(2):82-100.
    PMID: 29714144 DOI: 10.2174/1568009618666180430130248
    Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
  10. Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH
    Front Pharmacol, 2019;10:152.
    PMID: 30890933 DOI: 10.3389/fphar.2019.00152
    Colorectal cancer (CRC) is the third most prevalent form of cancer, after lung cancer and breast cancer, with the second highest death incidence. Over the years, natural compounds have been explored as an alternative to conventional cancer therapies such as surgery, radiotherapy, and chemotherapy. Curcumin, an active constituent of turmeric has been associated with various health benefits. It has gained much attention as an anticancer agent due to its ability to regulate multiple cell signaling pathways, including NF-κB, STAT3, activated protein-1 (AP-1), epidermal growth response-1 (Egr-1), and p53, which are crucial in cancer development and progression. Nevertheless, the clinical application of curcumin is greatly restricted because of its low water solubility, poor oral absorption, and rapid metabolism. These issues have led to the development of curcumin nanoformulations to overcome the limitations of the compound. Nanotechnology-based delivery systems have been widely used in improving the delivery of poorly-water soluble drugs. Besides, these systems also come with the added benefits of possible cellular targeting and improvement in cellular uptake. An ideal improved formulation should display a greater anticancer activity compared to free curcumin, and at the same time be non-toxic to the normal cells. In this review, we focus on the design and development of various nanoformulations to deliver curcumin for use in CRC such as liposomes, micelles, polymer nanoparticles, nanogels, cyclodextrin complexes, solid lipid nanoparticles (SLN), phytosomes, and gold nanoparticles. We also discuss the current pre-clinical and clinical evidences of curcumin nanoformulations in CRC therapy, analyse the research gap, and address the future direction of this research area.
  11. Ahmed A, Dujaili JA, Jabeen M, Umair MM, Chuah LH, Hashmi FK, et al.
    Front Pharmacol, 2021;12:807446.
    PMID: 35153763 DOI: 10.3389/fphar.2021.807446
    Background: With the increased availability of safe antiretroviral therapy (ART) in recent years, achieving optimal adherence and patient retention is becoming the biggest challenge for people living with HIV (PLWH). Care retention is influenced by several socioeconomic, socio-cultural, and government policies during the COVID-19 pandemic. Therefore, we aim to explore barriers and facilitators to adherence to ART among PLWH in Pakistan in general and COVID-19 pandemic related in particular. Methods: Semi-structured interviews were conducted among 25 PLWH from December 2020 to April 2021 in the local language (Urdu) at the ART centre of Pakistan Institute of Medical Sciences, Islamabad, Pakistan. Interviews were audio-recorded in the local Urdu language, and bilingual expert (English, Urdu) transcribed verbatim, coded for themes and sub-themes, and analyzed using a phenomenological approach for thematic content analysis. Results: Stigma and discrimination, fear of HIV disclosure, economic constraints, forgetfulness, religion (Ramadan, spiritual healing), adverse drug reactions, lack of social support, alternative therapies, and COVID-19-related lock-down and fear of lesser COVID-19 care due to HIV associated stigma were identified as barriers affecting the retention in HIV care. At the same time, positive social support, family responsibilities, use of reminders, the beneficial impact of ART, and initiation of telephone consultations, courier delivery, and long-term delivery of antiretrovirals during COVID-19 were identified as facilitators of HIV retention. Conclusion: Improving adherence and retention is even more challenging due to COVID-19; therefore, it requires the integration of enhanced access to treatment with improved employment and social support. HIV care providers must understand these reported factors comprehensively and treat patients accordingly to ensure the continuum of HIV care. A coordinated approach including different stakeholders is required to facilitate patient retention in HIV care and consequently improve the clinical outcomes of PLWH.
  12. Chuah LH, Fu JY, Nguyen S, Banciu M, Solanki PR, Ta HT
    Front Pharmacol, 2022;13:1122774.
    PMID: 36686703 DOI: 10.3389/fphar.2022.1122774
  13. Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH
    Pharmacol Res, 2022 Jun;180:106237.
    PMID: 35487405 DOI: 10.1016/j.phrs.2022.106237
    The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
  14. Ahmed A, Tanveer M, Dujaili JA, Chuah LH, Hashmi FK, Awaisu A
    AIDS Patient Care STDS, 2023 Jan;37(1):31-52.
    PMID: 36626156 DOI: 10.1089/apc.2022.0192
    People living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS; PLWHA) frequently encounter antiretroviral (ARV) therapy-related problems. Clinical pharmacists with specialized training in ARV stewardship play an important role in managing these problems. However, there is a paucity of evidence to clarify the impact of clinical pharmacists' interventions on managing ARV therapy-related problems in PLWHA. Therefore, we aim to systematically review the literature to determine the nature and impact of pharmacists' interventions on managing medication-related problems in PLWHA. The review protocol was registered on International Prospective Register of Systematic Reviews (PROSPERO; CRD42020173078). Relevant records were identified from six electronic bibliographic databases (PubMed, Embase, EBSCOhost, ProQuest, Scopus, and the Cochrane Central Register) from their inception until September 2022. We included all randomized and nonrandomized interventional studies that were published in English. After the abstract and full-text screening, data were extracted from the selected studies, and the quality of the studies was assessed. The electronic database search and citation tracking identified two thousand and three citations. The review included 21 of these studies, involving 2998 PLWHA, published between 2014 and 2022. Pharmacists' interventions, working alone or in a multi-disciplinary team, comprised ARV medication review, management of adverse drug reactions (ADRs), therapeutic drug monitoring, prevention of drug interactions, and provision of drug information to PLWHA or the health care team. The pharmacist-involved interventions significantly reduced incorrect/incomplete ARV regimens, drug interactions, incorrect dosages, duplicate therapy, polypharmacy, administration errors, missing medication, wrong formulation, ADRs, and prescribing errors. Most studies reported that physicians usually accept more than 90% of the pharmacists' recommendations. ARV medication-related problems remain highly prevalent in PLWHA. Pharmacist-led interventions and stewardship significantly reduce ARV therapy-related problems in PLWHA and are widely accepted by physicians. Dedicated pharmacists with specialized training and credentialing in infectious diseases or HIV/AIDS have a great potential to improve health outcomes in PLWHA.
  15. Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A
    Crit Rev Clin Lab Sci, 2023 Aug;60(5):321-345.
    PMID: 36825325 DOI: 10.1080/10408363.2023.2177605
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
  16. Chuah LH, Loo HL, Goh CF, Fu JY, Ng SF
    Drug Deliv Transl Res, 2023 May;13(5):1436-1455.
    PMID: 36808298 DOI: 10.1007/s13346-023-01307-w
    Atopic dermatitis (AD) is a complex, relapsing inflammatory skin disease with a considerable social and economic burden globally. AD is primarily characterized by its chronic pattern and it can have important modifications in the quality of life of the patients and caretakers. One of the fastest-growing topics in translational medicine today is the exploration of new or repurposed functional biomaterials into drug delivery therapeutic applications. This area has gained a considerable amount of research which produced many innovative drug delivery systems for inflammatory skin diseases like AD. Chitosan, a polysaccharide, has attracted attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine, and has been considered a promising candidate for AD treatment due to its antimicrobial, antioxidative, and inflammatory response modulation properties. The current pharmacological treatment for AD involves prescribing topical corticosteroid and calcineurin inhibitors. However, the adverse reactions associated with the long-term usage of these drugs such as itching, burning, or stinging sensation are also well documented. Innovative formulation strategies, including the use of micro- and nanoparticulate systems, biopolymer hydrogel composites, nanofibers, and textile fabrication are being extensively researched with an aim to produce a safe and effective delivery system for AD treatment with minimal side effects. This review outlines the recent development of various chitosan-based drug delivery systems for the treatment of AD published in the past 10 years (2012-2022). These chitosan-based delivery systems include hydrogels, films, micro-, and nanoparticulate systems as well as chitosan textile. The global patent trends on chitosan-based formulations for the AD are also discussed.
  17. Fu JY, Htar TT, De Silva L, Tan DM, Chuah LH
    Molecules, 2017 Feb 04;22(2).
    PMID: 28165404 DOI: 10.3390/molecules22020233
    Vitamin E is recognized as an essential vitamin since its discovery in 1922. Most vegetable oils contain a mixture of tocopherols and tocotrienols in the vitamin E composition. Structurally, tocopherols and tocotrienols share a similar chromanol ring and a side chain at the C-2 position. Owing to the three chiral centers in tocopherols, they can appear as eight different stereoisomers. Plant sources of tocopherol are naturally occurring in the form of RRR while synthetic tocopherols are usually in the form of all-racemic mixture. Similarly, with only one chiral center, natural tocotrienols occur as the R-isoform. In this review, we aim to discuss a few chromatographic methods that had been used to separate the stereoisomers of tocopherols and tocotrienols. These methods include high performance liquid chromatography, gas chromatography and combination of both. The review will focus on method development including selection of chiral columns, detection method and choice of elution solvent in the context of separation efficiency, resolution and chiral purity. The applications for separation of enantiomers in vitamin E will also be discussed especially in terms of the distinctive biological potency among the stereoisoforms.
  18. Ahmed A, Dujaili JA, Chuah LH, Hashmi FK, Le LK, Khanal S, et al.
    Appl Health Econ Health Policy, 2023 Sep;21(5):731-750.
    PMID: 37389788 DOI: 10.1007/s40258-023-00818-4
    BACKGROUND: Although safe and effective anti-retrovirals (ARVs) are readily available, non-adherence to ARVs is highly prevalent among people living with human immunodeficiency virus/acquired immunodeficiency syndrome (PLWHA). Different adherence-improving interventions have been developed and examined through decision analytic model-based health technology assessments. This systematic review aimed to review and appraise the decision analytical economic models developed to assess ARV adherence-improvement interventions.

    METHODS: The review protocol was registered on PROSPERO (CRD42022270039), and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Relevant studies were identified through searches in six generic and specialized bibliographic databases, i.e. PubMed, Embase, NHS Economic Evaluation Database, PsycINFO, Health Economic Evaluations Database, tufts CEA registry and EconLit, from their inception to 23 October 2022. The cost-effectiveness of adherence interventions is represented by the incremental cost-effectiveness ratio (ICER). The quality of studies was assessed using the quality of the health economics studies (QHES) instrument. Data were narratively synthesized in the form of tables and texts. Due to the heterogeneity of the data, a permutation matrix was used for quantitative data synthesis rather than a meta-analysis.

    RESULTS: Fifteen studies, mostly conducted in North America (8/15 studies), were included in the review. The time horizon ranged from a year to a lifetime. Ten out of 15 studies used a micro-simulation, 4/15 studies employed Markov and 1/15 employed a dynamic model. The most commonly used interventions reported include technology based (5/15), nurse involved (2/15), directly observed therapy (2/15), case manager involved (1/15) and others that involved multi-component interventions (5/15). In 1/15 studies, interventions gained higher quality-adjusted life years (QALYs) with cost savings. The interventions in 14/15 studies were more effective but at a higher cost, and the overall ICER was well below the acceptable threshold mentioned in each study, indicating the interventions could potentially be implemented after careful interpretation. The studies were graded as high quality (13/15) or fair quality (2/15), with some methodological inconsistencies reported.

    CONCLUSION: Counselling and smartphone-based interventions are cost-effective, and they have the potential to reduce the chronic adherence problem significantly. The quality of decision models can be improved by addressing inconsistencies in model selection, data inputs incorporated into models and uncertainty assessment methods.

  19. Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH
    Front Pharmacol, 2017;8:761.
    PMID: 29123482 DOI: 10.3389/fphar.2017.00761
    Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.
  20. De Silva L, Fu JY, Htar TT, Muniyandy S, Kasbollah A, Wan Kamal WHB, et al.
    Int J Nanomedicine, 2019;14:1101-1117.
    PMID: 30863048 DOI: 10.2147/IJN.S184912
    Background and purpose: Niosomes are nonionic surfactant-based vesicles that exhibit certain unique features which make them favorable nanocarriers for sustained drug delivery in cancer therapy. Biodistribution studies are critical in assessing if a nanocarrier system has preferential accumulation in a tumor by enhanced permeability and retention effect. Radiolabeling of nanocarriers with radioisotopes such as Technetium-99m (99mTc) will allow for the tracking of the nanocarrier noninvasively via nuclear imaging. The purpose of this study was to formulate, characterize, and optimize 99mTc-labeled niosomes.

    Methods: Niosomes were prepared from a mixture of sorbitan monostearate 60, cholesterol, and synthesized D-α-tocopherol polyethylene glycol 1000 succinate-diethylenetriaminepentaacetic acid (synthesis confirmed by 1H and 13C nuclear magnetic resonance spectroscopy). Niosomes were radiolabeled by surface chelation with reduced 99mTc. Parameters affecting the radiolabeling efficiency such as concentration of stannous chloride (SnCl2·H2O), pH, and incubation time were evaluated. In vitro stability of radiolabeled niosomes was studied in 0.9% saline and human serum at 37°C for up to 8 hours.

    Results: Niosomes had an average particle size of 110.2±0.7 nm, polydispersity index of 0.229±0.008, and zeta potential of -64.8±1.2 mV. Experimental data revealed that 30 µg/mL of SnCl2·H2O was the optimal concentration of reducing agent required for the radiolabeling process. The pH and incubation time required to obtain high radiolabeling efficiency was pH 5 and 15 minutes, respectively. 99mTc-labeled niosomes exhibited high radiolabeling efficiency (>90%) and showed good in vitro stability for up to 8 hours.

    Conclusion: To our knowledge, this is the first study published on the surface chelation of niosomes with 99mTc. The formulated 99mTc-labeled niosomes possessed high radiolabeling efficacy, good stability in vitro, and show good promise for potential use in nuclear imaging in the future.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links