The stem bark of Calophyllum depressinervosum and Calophyllum buxifolium were extracted and examined for their antioxidant activities, together with cytotoxicity towards human cancer cells. The methanol extract of C. depressinervosum exhibited good DPPH and NO scavenging effects. The strongest BCB inhibition and FIC effects were shown by dichloromethane and ethyl acetate extracts of both species. Overall, DPPH, FRAP and FIC assays showed strong correlation with TPC. For cytotoxicity, hexane extract of C. depressinervosum possessed the strongest anti-proliferative activities towards SNU-1 cells while the hexane extract of C. buxifolium showed the strongest activity towards LS-174T and K562 cells with the IC50 values ranging from 7 to 17 μg/mL. The purification of plant extracts afforded eight xanthones, ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4) xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and dombakinaxanthone (8). All the xanthones, except 1 were reported for the first time from both Calophyllum species. The xanthones were examined for their cytotoxic effect against K562 leukemic cells. Compounds 1 and 2 showed strong cytotoxicity with the IC50 values of 2.96 and 1.23 μg/mL, respectively. The molecular binding interaction of 2 was further investigated by performing molecular docking study with promising protein receptor Src kinase.
Four xanthones, α-mangostin (1), β-mangostin (2), mangostenol (3), mangaxanthone B (4), three benzophenones, mangaphenone (5), benthamianone (6), congestiflorone (7) and one sterol, stigmasterol (8) were isolated from the stem barks of Garcinia mangostana L. and G. benthamiana (Planch. & Triana) Pipoly. Compounds 1, 2, 4 and 5 exhibited significant cytotoxicity through MTT assay towards MCF-7 and MDA-MB-231 cells with the IC50 values range from 4.4 to 12.0 µM. Remarkably, mangaphenone (5) showed non-cytotoxicity against normal Vero cells, revealing its potential as lead compound for anti-breast cancer drug. Structure-activity relationship postulated that the prenyl and hydroxyl groups present in xanthones are important in promoting anti-proliferative effects. Molecular docking simulation study of 1, 2, 4 and 5 with 2OCF and 4PIV implied that the induction of apoptosis for both cancer cells involve ER and FAS signaling pathways. Future study on the lead optimization of 5 is highly recommended.
Previous studies on Calophyllum species have shown the existence of a wide variety of bioactive xanthones and coumarins. Phytochemical investigations carried out on the plant, Calophyllum hosei led to the isolation of eleven known xanthones, ananixanthone (1), 9-hydroxycalabaxanthone (2), dombakinaxanthone (3), thwaitesixanthone (4), caloxanthone B (5), trapezifolixanthone (6), β-mangostin (7), osajaxanthone (8), caloxanthone A (9), calozeyloxanthone (10) and rubraxanthone (11). The structures of these compounds were identified and elucidated using spectroscopic techniques such as NMR and MS. The cytotoxicity and nitric oxide production inhibitory activities of selected xanthones as well as the extracts were tested against HL-60 cells and RAW 264.7 murine macrophages, respectively. Among all tested compounds, β-mangostin exhibited appreciable cytotoxicity against HL-60 cells with the IC50 value of 7.16 ± 0.70 µg/mL and rubraxanthone exhibited significant nitric oxide inhibitory activity against LPS induced RAW 264.7 murine macrophages with the IC50 value of 6.45 ± 0.15 µg/mL.
Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and MS. The cytotoxicities and anti-inflammatory activities of these five compounds against RAW cell 264.7 were tested. The structural-activity relationship studies indicated that β-mangostin showed a significant activity against the LPS-induced RAW cell 264.7, while the acetyl- as well as the O-alkyl- β-mangostin derivatives did not give good activity. Naturally occurring β-mangostin demonstrated comparatively better anti-inflammatory activity than its synthetic counterparts.
Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.
Natural products, either pure compounds or standardized plant extracts, have provided opportunities for the discovery of new drugs. Nowadays, most of the world's population still relies on traditional medicines for healthcare purposes. Plants, in particular, are always used as traditional medicine, as they contain a diverse number of phytochemicals that can be used for the treatment of diseases. The multicomponent feature in the plants is considered a positive phytotherapeutic hallmark. Hence, ethnopharmacognosy has been the focus for finding alternative treatments for diseases. Melicopelunu-ankenda, also known as Euodialunu-ankenda, is widely distributed in tropical regions of Asia. Different parts of M.lunu-ankenda have been used for treatment of hypertension, menstrual disorder, diabetes, and fever, and as an emmenagogue and tonic. It has also been consumed as salad and as a condiment for food flavorings. The justification of use of M.lunu-ankenda in folk medicines is supported by its reported biological activities, including its cytotoxic, antibacterial, antioxidant, analgesic, antidiabetic, and anti-inflammatory activities. This review summarizes the phytochemical compounds isolated from various parts of M.lunu-ankenda, such as root and leaves, and also its biological activities, which could make the species a new therapeutic agent for some diseases, including diabetes, in the future.
A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
A phytochemical study carried out on the plant, Calophyllum wallichianum has led to the isolation of a new coumarin, wallimarin T (1) and a known coumarin, calanolide E (2) along with two common triterpenes, friedelin (3) and stigmasterol (4). The structures of these compounds were elucidated with the aid of spectroscopic analyses such as FT-IR, GC-MS, and NMR. MIC assay against the Bacillus bacteria were conducted on the extracts and this gave MIC values ranging from 0.313 to 1.25 mg/mL. Compound 2 was weakly inhibitory towards the Bacilli strains with MIC values ranging from 0.25-0.50 mg/mL. Wallimarin T (1) was not active towards all four bacteria. Overall, the extracts exhibited weak bactericidal properties whereas compound 2 was not bactericidal on the tested bacteria. The hexane and chloroform extracts of the plant were found to be inhibitors to the growth of Bacillus megaterium, Bacillus cereus, Bacillus pumilus and Bacillus subtilis.