Displaying all 13 publications

Abstract:
Sort:
  1. Mahmood H, Habib M, Aslam W, Khursheed S, Fatima S, Aziz S, et al.
    BMC Res Notes, 2021 Sep 10;14(1):354.
    PMID: 34507605 DOI: 10.1186/s13104-021-05768-5
    OBJECTIVE: Diffuse Large B Cell Lymphoma (DLBCL) is the most common type of Non-Hodgkin Lymphoma (NHL). The aim of this study was to assess the clinico pathological characteristics of DLBCL specifically, among the affected individuals residing in Northern areas of Pakistan who had not been previously included in major lymphoma studies due to their remote location.

    RESULTS: Mean age of the patients was 49.7 years. Male: female ratio was 1.5:1. Primary site was lymph node in 99 (71.74%) patients, out of which, 36 (26.09%) patients had B symptoms and 19 (13.77%) patients had stage IV disease. 39 (28.26%) patients had primary extra nodal involvement, 4 (2.90%) patients had B symptoms and 3 (2.17%) had stage IV disease. Extra nodal sites involved in primary extra nodal DLBCL were gastrointestinal tract (GIT) 19 (48.72%), tonsils 6 (15.38%), spine 4 (10.26%), soft tissue swelling 3 (7.69%), parotid gland 2 (5.13%), thyroid 2 (5.13%) central nervous system (CNS) 1 (2.56), breast 1 (2.56%) and bone marrow 1 (2.56%). Our study revealed increased percentage of patients with nodal DLBCL in stage IV and with B symptoms. Few patients with primary extra nodal DLBCL had B symptoms and stage IV disease at presentation. GIT was the most common site of involvement in primary extra nodal DLBCL.

  2. Faheem M, Saeed S, Sajjad A, Wang S, Ali A
    PLoS One, 2019;14(9):e0222635.
    PMID: 31568475 DOI: 10.1371/journal.pone.0222635
    Aphids are major pests of wheat crop in Pakistan inflicting considerable economic losses. A better knowledge of landscape scale spatial distribution of aphids and their natural enemies could be used to improve integrated pest management programs. Therefore, the present study aimed to document spatio-temporal variations in populations of wheat aphids and their natural enemies in Pakistan. The 2-year survey study was carried out at ten experimental farms located in five districts of four contrasted agro-ecological zones of eastern Pakistan (Punjab area) i.e. District Chakwal in arid zone, Gujranwala in rice-cropped zone, Faisalabad in central mixed-cropped zone, and Khanewal and Multan in cotton-cropped zone. The dominant aphid species i.e. Schizaphis graminum, Rhopalosiphum padi, R. maidis and Sitobion avenae varied significantly among the five districts surveyed. The population of S. graminum was observed more abundant in arid, R. padi in rice, S. avenae in aird and rice, and R. maidis in cotton-I zones. Aphids ended their population dynamics on 25th March in central mixed-cropped zone and 12th April in other three zones. Various species of natural enemies, mainly Coccinella septumpunctata, C. undecimpunctata, Menochilus sexmaculata, Chrysoperla carnea, Syrphidae and parasitoid mummies were inconsistently observed in four agro-ecological zones. The population of C. septumpunctata, was observed more abundant in rice zone, C. undecimpunctata and C. carnea in cotton-I and arid zones, M. sexmaculata in cotton-I and II zones, Syrphidae in cotton-I zone and parasitoid mummies in rice and arid zones. There were no clear relationships between aphid and the natural enemy populations. The present study may serve as a baseline regarding distribution of wheat aphids and their natural enemies and the results provided insights for further studies on the potential top-down (natural enemies) versus bottom-up (fertilization and irrigation regimes) forces in management of wheat aphids in eastern Pakistan.
  3. Faheem M, Hussain S, ArsalanTanveer, Safdar N, Anwer MA
    Environ Sci Pollut Res Int, 2022 Jan;29(5):7393-7405.
    PMID: 34476703 DOI: 10.1007/s11356-021-16231-0
    In this modern era, the global warming issue has been on the front burner of almost all countries including Malaysia. This study utilizing time series data spanning from 1970 to 2018. To this end, a linear and nonlinear autoregressive distributed lag model was conducted to reveal the foreign direct investment-growth-environment nexus. The conclusion validates the existence of the pollution haven hypothesis in Malaysia. Specifically, the empirical results of the linear autoregressive distributed lag model indicate that foreign direct investment and real gross domestic product have a significant positive impact on CO2 emission while carbon damage cost and the interaction term of foreign direct investment and carbon damage cost have a negative impact in the long run and short run. To find the asymmetric behavior of the foreign direct investment our study employed a nonlinear autoregressive distributed lag model. The findings confirmed the asymmetry association of foreign direct investment with CO2 emission. Interestingly, our results of the interaction term in both models are significant with a negative sign that shows the mediating effect of carbon damage cost that converts the positive effect of foreign direct investment on CO2 emission to negative. Thus, it is vital to reinforce the use of significant regulation as the Malaysian economy opens up to attract more foreign direct investment.
  4. Faheem M, Al-Khasawneh MA, Khan AA, Madni SHH
    Data Brief, 2024 Apr;53:110212.
    PMID: 38439994 DOI: 10.1016/j.dib.2024.110212
    Blockchain-based reliable, resilient, and secure communication for Distributed Energy Resources (DERs) is essential in Smart Grid (SG). The Solana blockchain, due to its high stability, scalability, and throughput, along with low latency, is envisioned to enhance the reliability, resilience, and security of DERs in SGs. This paper presents big datasets focusing on SQL Injection, Spoofing, and Man-in-the-Middle (MitM) cyberattacks, which have been collected from Solana blockchain-based Industrial Wireless Sensor Networks (IWSNs) for events monitoring and control in DERs. The datasets provided include both raw (unprocessed) and refined (processed) data, which highlight distinct trends in cyberattacks in DERs. These distinctive patterns demonstrate problems like superfluous mass data generation, transmitting invalid packets, sending deceptive data packets, heavily using network bandwidth, rerouting, causing memory overflow, overheads, and creating high latency. These issues result in ineffective real-time events monitoring and control of DERs in SGs. The thorough nature of these datasets is expected to play a crucial role in identifying and mitigating a wide range of cyberattacks across different smart grid applications.
  5. Faheem M, Fizza G, Ashraf MW, Butt RA, Ngadi MA, Gungor VC
    Data Brief, 2021 Apr;35:106854.
    PMID: 33659599 DOI: 10.1016/j.dib.2021.106854
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid.
  6. Anwar M, Abdullah AH, Altameem A, Qureshi KN, Masud F, Faheem M, et al.
    Sensors (Basel), 2018 Sep 26;18(10).
    PMID: 30261628 DOI: 10.3390/s18103237
    Recent technological advancement in wireless communication has led to the invention of wireless body area networks (WBANs), a cutting-edge technology in healthcare applications. WBANs interconnect with intelligent and miniaturized biomedical sensor nodes placed on human body to an unattended monitoring of physiological parameters of the patient. These sensors are equipped with limited resources in terms of computation, storage, and battery power. The data communication in WBANs is a resource hungry process, especially in terms of energy. One of the most significant challenges in this network is to design energy efficient next-hop node selection framework. Therefore, this paper presents a green communication framework focusing on an energy aware link efficient routing approach for WBANs (ELR-W). Firstly, a link efficiency-oriented network model is presented considering beaconing information and network initialization process. Secondly, a path cost calculation model is derived focusing on energy aware link efficiency. A complete operational framework ELR-W is developed considering energy aware next-hop link selection by utilizing the network and path cost model. The comparative performance evaluation attests the energy-oriented benefit of the proposed framework as compared to the state-of-the-art techniques. It reveals a significant enhancement in body area networking in terms of various energy-oriented metrics under medical environments.
  7. Faheem M, Butt RA, Raza B, Alquhayz H, Abbas MZ, Ngadi MA, et al.
    Sensors (Basel), 2019 Nov 20;19(23).
    PMID: 31757104 DOI: 10.3390/s19235072
    The importance of body area sensor networks (BASNs) is increasing day by day because of their increasing use in Internet of things (IoT)-enabled healthcare application services. They help humans in improving their quality of life by continuously monitoring various vital signs through biosensors strategically placed on the human body. However, BASNs face serious challenges, in terms of the short life span of their batteries and unreliable data transmission, because of the highly unstable and unpredictable channel conditions of tiny biosensors located on the human body. These factors may result in poor data gathering quality in BASNs. Therefore, a more reliable data transmission mechanism is greatly needed in order to gather quality data in BASN-based healthcare applications. Therefore, this study proposes a novel, multiobjective, lion mating optimization inspired routing protocol, called self-organizing multiobjective routing protocol (SARP), for BASN-based IoT healthcare applications. The proposed routing scheme significantly reduces local search problems and finds the best dynamic cluster-based routing solutions between the source and destination in BASNs. Thus, it significantly improves the overall packet delivery rate, residual energy, and throughput with reduced latency and packet error rates in BASNs. Extensive simulation results validate the performance of our proposed SARP scheme against the existing routing protocols in terms of the packet delivery ratio, latency, packet error rate, throughput, and energy efficiency for BASN-based health monitoring applications.
  8. Jeremic B, Fidarova E, Sharma V, Faheem M, Ameira AA, Nasr Ben Ammar C, et al.
    Radiother Oncol, 2015 Jul;116(1):21-6.
    PMID: 26163093 DOI: 10.1016/j.radonc.2015.06.017
    To optimize palliation in incurable locally advanced non-small cell lung cancer (NSCLC), the International Atomic Energy Agency conducted a prospective randomized study (NCT00864331) comparing protracted palliative radiotherapy (RT) course with chemotherapy (CHT) followed by short-course palliative RT.
  9. Faheem M, Butt RA, Raza B, Alquhayz H, Ashraf MW, Shah SB, et al.
    Sensors (Basel), 2019 Nov 02;19(21).
    PMID: 31684014 DOI: 10.3390/s19214762
    Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs.
  10. Rane R, Walsh TK, Lenancker P, Gock A, Dao TH, Nguyen VL, et al.
    Sci Rep, 2023 Jan 12;13(1):660.
    PMID: 36635481 DOI: 10.1038/s41598-023-27501-x
    The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid 'west-to-east' spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species. Using neutral single nucleotide polymorphic (SNP) DNA markers, we detected genome introgression that suggested most populations in this study were overwhelmingly C- and R-strain hybrids (n = 252/262). SNP and mitochondrial DNA markers identified multiple introductions that were most parsimoniously explained by anthropogenic-assisted spread, i.e., associated with international trade of live/fresh plants and plant products, and involved 'bridgehead populations' in countries to enable successful pest establishment in neighbouring countries. Distinct population genomic signatures between Myanmar and China do not support the 'African origin spread' nor the 'Myanmar source population to China' hypotheses. Significant genetic differentiation between populations from different Australian states supported multiple pathways involving distinct SEA populations. Our study identified Asia as a biosecurity hotspot and a FAW genetic melting pot, and demonstrated the use of genome analysis to disentangle preventable human-assisted pest introductions from unpreventable natural pest spread.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links