Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Burham N, Hamzah AA, Majlis BY
    Biomed Mater Eng, 2014;24(6):2203-9.
    PMID: 25226919 DOI: 10.3233/BME-141032
    This paper studies parameters which affect the pore size diameter of a silicon membrane. Electrochemical etching is performed in characterise the parameter involved in this process. The parameter has been studied is volume ratio of hydrofluoric acid (HF) and ethanol as an electrolyte aqueous for electrochemical etch. This electrolyte aqueous solution has been mixed between HF and ethanol with volume ratio 3:7, 5:5, 7:3 and 9:1. As a result, the higher volume of HF in this electrolyte gives the smallest pore size diameter compared to the lower volume of HF. These samples have been dipped into HF and ethanol electrolyte aqueous with supplied 25 mA/cm2 current density for 20, 30, 40, and 50 minutes. The samples will inspect under Scanning Electron Microscope (SEM) to execute the pore formations on silicon membrane surface.
  2. Hamzah AA, Selvarajan RS, Majlis BY
    Sains Malaysiana, 2017;46(7):1125-1139.
    Since its discovery in 2004, graphene has enticed engineers and researchers from various fields to explore its possibilities to be incepted into various devices and applications. Graphene is deemed a ‘super’ material by researchers due to its extraordinary strength, extremely high surface-to-mass ratio and superconducting properties. Nonetheless, graphene has yet to find plausible footing as an electronics material. In biomedical field, graphene has proved useful in tissue engineering, drug delivery, cancer teraphy, as a component in power unit for biomedical implants and devices and as a vital component in biosensors. Graphene is used as scaffolding for tissue regeneration in stem cell tissue engineering, as active electrodes in supercapacitor for powering wearable and implantable biomedical devices and as detectors in biosensors. In tissue engineering, the extreme strength of monolayer graphene enables it to hold stem cell tissues as scaffold during in-vitro cell regeneration process. In MEMS supercapacitor, graphene's extremely high surface-to-mass ratio enables it to be used as electrodes in order to increase the power unit's energy and power densities. A small yet having high energy and power densities cell is needed to power often space constrainted biomedical devices. In FET biosensors, graphene acts as detector electrodes, owing to its superconductivity property. Graphene detector electrodes is capable of detecting target molecules at a concentration level as low as 1 pM, making it the most sensitive biosensor available today. Graphene continues to envisage unique and exciting applications for biomedical field, prompting continuous research which results and implementation could benefit the general public in decades to come.
  3. Zawawi SA, Hamzah AA, Majlis BY, Mohd-Yasin F
    Micromachines (Basel), 2021 Sep 13;12(9).
    PMID: 34577744 DOI: 10.3390/mi12091101
    In this study, 550 nm thick cubic silicon carbide square diaphragms were back etched from Si substrate. Then, indentation was carried out to samples with varying dimensions, indentation locations, and loads. The influence of three parameters is documented by analyzing load-displacement curves. It was found that diaphragms with bigger area, indented at the edge, and low load demonstrated almost elastic behaviour. Furthermore, two samples burst and one of them displayed pop-in behaviour, which we determine is due to plastic deformation. Based on optimum dimension and load, we calculate maximum pressure for elastic diaphragms. This pressure is sufficient for cubic silicon carbide diaphragms to be used as acoustic sensors to detect poisonous gasses.
  4. Hassali MA, Nouri AI, Hamzah AA, Verma AK
    J Med Ultrasound, 2018 03 28;26(1):48-51.
    PMID: 30065514 DOI: 10.4103/JMU.JMU_9_18
    Penile fracture is defined as a traumatic rupture of either corpus cavernosum or the tunica albuginea; sometimes it can be both. It may be caused by exotic masturbation acts, sexual intercourse, or other trauma to this area. This can be accompanied by injury to the urethra, which is the cause of hematuria as a symptom for some patients. Typically, diagnosis of penile rupture or fracture depends on clinical examination and history told by the patients. We are stating the importance of medical imaging in the diagnosis of patients with penile fracture by presenting a case of patient suffered from penile fracture after a fall on his penis where it affected the erection of two-third of his penis. In which, the proper diagnosis by imaging studies and taking actions accordingly can save the patients from unnecessary surgeries that indeed increase the bill of the medical care directly and indirectly. Therefore, most patients can be diagnosed cost-effectively and treated surgically without a need to delay surgery, which is often the case if one was to resort to other investigations. Investigations such as retrograde urethrography for suspected urethral injury should only be used when the diagnosis of penile fracture is in doubt.
  5. Hamzah AA, Yunas J, Majlis BY, Ahmad I
    Sensors (Basel), 2008 Nov 19;8(11):7438-7452.
    PMID: 27873938
    This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG) as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP) as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.
  6. Zulkepli N, Yunas J, Mohamed MA, Hamzah AA
    Micromachines (Basel), 2021 Jun 22;12(7).
    PMID: 34206662 DOI: 10.3390/mi12070734
    Thermoelectric generators (TEGs) are a form of energy harvester and eco-friendly power generation system that directly transform thermal energy into electrical energy. The thermoelectric (TE) method of energy harvesting takes advantage of the Seebeck effect, which offers a simple solution for fulfilling the power-supply demand in almost every electronics system. A high-temperature condition is commonly essential in the working mechanism of the TE device, which unfortunately limits the potential implementation of the device. This paper presents an in-depth analysis of TEGs at low operating temperature. The review starts with an extensive description of their fundamental working principles, structure, physical properties, and the figure of merit (ZT). An overview of the associated key challenges in optimising ZT value according to the physical properties is discussed, including the state of the art of the advanced approaches in ZT optimisation. Finally, this manuscript summarises the research status of Bi2Te3-based semiconductors and other compound materials as potential materials for TE generators working at low operating temperatures. The improved TE materials suggest that TE power-generation technology is essential for sustainable power generation at near-room temperature to satisfy the requirement for reliable energy supplies in low-power electrical/electronics systems.
  7. Selvarajan RS, Gopinath SCB, Zin NM, Hamzah AA
    Sensors (Basel), 2021 Jun 01;21(11).
    PMID: 34205852 DOI: 10.3390/s21113829
    The race towards the development of user-friendly, portable, fast-detection, and low-cost devices for healthcare systems has become the focus of effective screening efforts since the pandemic attack in December 2019, which is known as the coronavirus disease 2019 (COVID-19) pandemic. Currently existing techniques such as RT-PCR, antigen-antibody-based detection, and CT scans are prompt solutions for diagnosing infected patients. However, the limitations of currently available indicators have enticed researchers to search for adjunct or additional solutions for COVID-19 diagnosis. Meanwhile, identifying biomarkers or indicators is necessary for understanding the severity of the disease and aids in developing efficient drugs and vaccines. Therefore, clinical studies on infected patients revealed that infection-mediated clinical biomarkers, especially pro-inflammatory cytokines and acute phase proteins, are highly associated with COVID-19. These biomarkers are undermined or overlooked in the context of diagnosis and prognosis evaluation of infected patients. Hence, this review discusses the potential implementation of these biomarkers for COVID-19 electrical biosensing platforms. The secretion range for each biomarker is reviewed based on clinical studies. Currently available electrical biosensors comprising electrochemical and electronic biosensors associated with these biomarkers are discussed, and insights into the use of infection-mediated clinical biomarkers as prognostic and adjunct diagnostic indicators in developing an electrical-based COVID-19 biosensor are provided.
  8. Hamzah AA, Rahman MN, Daud MA, Mahamood Z
    Malays J Med Sci, 2007 Jul;14(2):67-71.
    PMID: 22993495 MyJurnal
    Patients with Benign Prostatic Hyperplasia (BPH) commonly presents with lower urinary tract symptoms (LUTS), which can be of obstructive symptoms such as hesitancy, incomplete voiding, post void dribbling or of irritative symptoms such as urgency, frequency and nocturia. Various recent studies indicate that nocturia is a very important and bothersome lower urinary tract symptom especially among patients with Benign Prostatic Hyperplasia (BPH). The aims of the study was to determine the frequency of common urinary symptoms among patients with BPH in HUSM as well as to evaluate the extent of bothersomeness of each and every symptom to these patients. This study too was aimed at evaluating the success of TURP in resolving pre operative LUTS. This was a questionnaire-based survey using a validated ICSBPH model whereby patients with BPH were selected and quizzed personally by an investigator. A subset of patients who had undergone TURP were further questioned regarding their satisfaction with the procedure. When nocturia is defined as waking up at night once or more to pass urine, the prevalence of nocturia was about 90%, but only 1 in 6 patients considered this is a very serious symptom. Even if the definition was changed to waking up twice or more, the prevalence is still quite high at over 80%. Urgency were noted in half of the patients, but only a quarter of them consider it a serious problem. 1 in 5 patients experienced significant leak and almost all consider it serious. About one third of the studied population had to be catheterized due to urinary obstruction and interestingly only about half of them considered it as a very serious event. Overall, a great majority of these patients considered suffering from these urinary symptoms for the rest of their life as very devastating. This study conclude that although the prevalence of nocturia was high among BPH patients, but it was not considered serious by majority of them. In fact, LUTS in our BPH patients did not differ much from BPH patients elsewhere. On the whole, TURP resolved most of the LUTS effectively.
  9. Mallhi TH, Sarriff A, Adnan AS, Khan YH, Hamzah AA, Jummaat F, et al.
    J Coll Physicians Surg Pak, 2015 Nov;25(11):828-34.
    PMID: 26577971 DOI: 11.2015/JCPSP.828834
    Dengue Viral Infection (DVI) imperils an estimated 2.5 billion people living in tropical and subtropical regions. World Health Organization (2011) guidelines also classified dengue as 'Expanded Dengue Syndrome' to incorporate wide spectrum of unusual manifestations of dengue infection affecting various organ systems - including liver, kidney, heart and brain. Renal involvements are least appreciated area of dengue infection, therefore, we systematically reviewed studies describing renal disorders in dengue infection, with emphasis on Acute Kidney Injury (AKI). The purpose of current review is to underscore clinicians’attention to this neglected intricacy of DVI. It suggests that dengue induced renal involvements vary from glomerulonephritis, nephrotic range proteinuria and AKI. We observed great disparity in incidence of AKI among dengue patients, based upon criteria used to define AKI. AKI among dengue patients was found to be associated with significant morbidity, mortality and longer hospitalization, adding financial burden to patients and healthcare system. Additionally, we identified several predictors of AKI in dengue patients including old age, obesity, severe dengue infection and concurrent bacterial or viral infection. Direct viral injury and deposition of antigen-antibody complex in glomerulus were found to be possible causes of renal disorders in dengue infection. Prior knowledge of clinico-laboratory characteristics and risk factors with early detection of AKI by using appropriate criteria would not only reduce morbidity and mortality but also decrease burden to patients and healthcare system.
  10. Buyong MR, Larki F, Faiz MS, Hamzah AA, Yunas J, Majlis BY
    Sensors (Basel), 2015;15(5):10973-90.
    PMID: 25970255 DOI: 10.3390/s150510973
    In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall.
  11. Selvarajan RS, Rahim RA, Majlis BY, Gopinath SCB, Hamzah AA
    Sensors (Basel), 2020 May 06;20(9).
    PMID: 32384631 DOI: 10.3390/s20092642
    Nephrogenic diabetes insipidus (NDI), which can be congenital or acquired, results from the failure of the kidney to respond to the anti-diuretic hormone (ADH). This will lead to excessive water loss from the body in the form of urine. The kidney, therefore, has a crucial role in maintaining water balance and it is vital to restore this function in an artificial kidney. Herein, an ultrasensitive and highly selective aptameric graphene-based field-effect transistor (GFET) sensor for ADH detection was developed by directly immobilizing ADH-specific aptamer on a surface-modified suspended graphene channel. This direct immobilization of aptamer on the graphene surface is an attempt to mimic the functionality of collecting tube V 2 receptors in the ADH biosensor. This aptamer was then used as a probe to capture ADH peptide at the sensing area which leads to changes in the concentration of charge carriers in the graphene channel. The biosensor shows a significant increment in the relative change of current ratio from 5.76 to 22.60 with the increase of ADH concentration ranging from 10 ag/mL to 1 pg/mL. The ADH biosensor thus exhibits a sensitivity of 50.00 µA· ( g / mL ) - 1 with a limit of detection as low as 3.55 ag/mL. In specificity analysis, the ADH biosensor demonstrated a higher current value which is 338.64 µA for ADH-spiked in phosphate-buffered saline (PBS) and 557.89 µA for ADH-spiked in human serum in comparison with other biomolecules tested. This experimental evidence shows that the ADH biosensor is ultrasensitive and highly selective towards ADH in PBS buffer and ADH-spiked in human serum.
  12. Mohmad AR, Hamzah AA, Yang J, Wang Y, Bozkurt I, Shin HS, et al.
    Faraday Discuss, 2021 Apr 01;227:332-340.
    PMID: 33523053 DOI: 10.1039/c9fd00132h
    In this work, we report the synthesis and characterization of mixed phase Nb1+xS2 nanoflakes prepared by chemical vapor deposition. The as-grown samples show a high density of flakes (thickness ∼50 nm) that form a continuous film. Raman and X-ray diffraction data show that the samples consist of both 2H and 3R phases, with the 2H phase containing a high concentration of Nb interstitials. These Nb interstitials sit in between the NbS2 layers to form Nb1+xS2. Cross-sectional Energy Dispersive Spectroscopy analysis with transmission electron microscopy suggests that the 2H Nb1+xS2 region is found in thinner flakes, while 3R NbS2 is observed in thicker regions of the films. The evolution of the phase from 2H Nb1+xS2 to 3R NbS2 may be attributed to the change of the growth environment from Nb-rich at the start of the growth to sulfur-rich at the latter stage. It was also found that the incorporation of Nb interstitials is highly dependent on the temperature of the NbCl5 precursor and the position of the substrate in the furnace. Samples grown at high NbCl5 temperature and with substrate located closer to the NbCl5 source show higher incorporation of Nb interstitials. Electrical measurements show linear I-V characteristics, indicating the metallic nature of the Nb1+xS2 film with relatively low resistivity of 4.1 × 10-3Ω cm.
  13. Nadzirah S, Gopinath SCB, Parmin NA, Hamzah AA, Mohamed MA, Chang EY, et al.
    Crit Rev Anal Chem, 2020 Sep 30.
    PMID: 32997522 DOI: 10.1080/10408347.2020.1816447
    Biosensors operating based on electrical methods are being accelerated toward rapid and efficient detection that improve the performance of the device. Continuous study in nano- and material-sciences has led to the inflection with properties of nanomaterials that fit the trend parallel to the biosensor evolution. Advancements in technology that focuses on nano-hybrid are being used to develop biosensors with better detection strategies. In this sense, titanium dioxide (TiO2) nanomaterials have attracted extensive interest in the construction of electrical biosensors. The formation of TiO2 nano-hybrid as an electrical transducing material has revealed good results with high performance. The modification of the sensing portion with a combination (nano-hybrid form) of nanomaterials has produced excellent sensors in terms of stability, reproducibility, and enhanced sensitivity. This review highlights recent research advancements with functional TiO2 nano-hybrid materials, and their victorious story in the construction of electrical biosensors are discussed. Future research directions with commercialization of these devices and their extensive utilizations are also discussed.
  14. Rashid NFA, Deivasigamani R, Wee MFMR, Hamzah AA, Buyong MR
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372193 DOI: 10.3390/s21154957
    We present the integration of a flow focusing microfluidic device in a dielectrophoretic application that based on a tapered aluminum microelectrode array (TAMA). The characterization and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software and fabricated using the micro-milling process combined with soft lithography using PDMS. The flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and 1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate the trajectories of two different types of particles in the channel. For further validation, the focusing of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency from 20% to 80% in the ROI.
  15. Zainal Ariffin NH, Mohammad Haniff MAS, Syono MI, Ambri Mohamed M, Hamzah AA, Hashim AM
    ACS Omega, 2021 Sep 21;6(37):23710-23722.
    PMID: 34568651 DOI: 10.1021/acsomega.1c01520
    We report a viable method to produce nanocrystalline graphene films on polycrystalline nickel (Ni) with enhanced N doping at low temperatures by a cold-wall plasma-assisted chemical vapor deposition (CVD) method. The growth of nanocrystalline graphene films was carried out in a benzene/ammonia/argon (C6H6/NH3/Ar) system, in which the temperature of the substrate heated by Joule heating can be further lowered to 100 °C to achieve a low sheet resistance of 3.3 kΩ sq-1 at a high optical transmittance of 97.2%. The morphological, structural, and electrical properties and the chemical compositions of the obtained N-doped nanocrystalline graphene films can be tailored by controlling the growth parameters. An increase in the concentration of atomic N from 1.42 to 11.28 atomic percent (at.%) is expected due to the synergetic effects of a high NH3/Ar ratio and plasma power. The possible growth mechanism of nanocrystalline graphene films is also discussed to understand the basic chemical reactions that occur at such low temperatures with the presence of plasma as well as the formation of pyridinic-N- and pyrrolic-N-dominated nanocrystalline graphene. The realization of nanocrystalline graphene films with enhanced N doping at 100 °C may open great potential in developing future transparent nanodevices.
  16. Hamzah AA, Keow CK, Syazri A, Mallhi TH, Khan AH, Khan YH, et al.
    J Coll Physicians Surg Pak, 2017 Mar;27(3):S13-S15.
    PMID: 28302231 DOI: 238
    A bezoar is a concretion of foreign or indigestible matter in the alimentary canal and is usual cause of gastric obstruction. Bezoars can become fragmented and migrate downward leading to intestinal obstruction. Diagnosis of phytobezoar has become challenging in clinical practice due to lack of patient history and inability of patient to correlate preceding events with the episode of bowel obstruction. Bezoar associated small bowel obstruction rarely occurs and is usually found in patients with history of gastrointestinal surgery. Very few cases are reported of small bowel obstruction due to bezoar in healthy population without prior illness or surgery. We present a case of small bowel obstruction due to mushroom bezoar in a 62-year patient with no past history of medical illness or gastric surgery. Enterotomy was performed and a whole piece of undigested mushroom measuring 5 x 3 cm was successfully removed.
  17. Sihar N, Tiong TY, Dee CF, Ooi PC, Hamzah AA, Mohamed MA, et al.
    Nanoscale Res Lett, 2018 May 15;13(1):150.
    PMID: 29766297 DOI: 10.1186/s11671-018-2566-6
    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.
  18. Tiong TY, Ooi L, Dee CF, Hamzah AA, Majlis BY
    Nanotechnology, 2018 Oct 26;29(43):435601.
    PMID: 30084385 DOI: 10.1088/1361-6528/aad884
    Anodic aluminium oxide (AAO) is a self-organised nanopore that has been widely studied due to the ease of its synthesization and pore properties manipulation. However, pore growth behaviour under different geometrical surfaces is rarely studied, particularly on the effect of combined curved surfaces towards pore growth properties, which is crucial in designing unique porous platform for specific applications. This paper reports study on the decisive effect of curvature surfaces on development of pore structure and properties at a constant potential. In this work, AAO grown on treated convex and concave surfaces were analysed in terms of pore quantity, pore diameter, interpore distance, pore length and other parameters of pore bottom geometry in conjugation with observation of pore cessation, bifurcation, bending and tapering. The unique formation of tapered pore was observed and described. Major factors deciding pore properties under curved surfaces were identified and discussed. We introduced a new parameter for surface quantification known as central inscribed angle, which was identified to be the central factor which decides pore growth behaviour under a curvature. Here, we observed a different trend in growth rate of pores under different curvatures, which oppose the commonly accepted convex > planar > concave pattern. Levelling height was later identified to be the decisive factor in determining growth rate of pores under a curvature at different geometrical location. These findings open up possibility to precisely control and tailor the growing path and pore structures of AAO simply via anodising an Al sheet under combined curvature surfaces, which could be beneficial for future novel applications.
  19. Nadzirah S, Hashim U, Gopinath SCB, Parmin NA, Hamzah AA, Yu HW, et al.
    Mikrochim Acta, 2020 03 17;187(4):235.
    PMID: 32185529 DOI: 10.1007/s00604-020-4214-y
    A titanium dioxide nanoparticle (TiO2 NP)-mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I-V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10-11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 μL). Graphical abstract Fig. (a) Graphical illustration of electronic biosensor set up and (b) relationship between limit of detection (LOD) and the unaffected poultry samples on E. coli O157:H7.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links