Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Razmavar S, Abdulla MA, Ismail SB, Hassandarvish P
    Biomed Res Int, 2014;2014:521287.
    PMID: 25028658 DOI: 10.1155/2014/521287
    This study was based on screening antibacterial activity of the ethanol extract of Baeckea frutescens L. against MRSA clinical isolates, analyzes the potential antibacterial compound, and assesses the cytotoxicity effect of the extract in tissue culture. Leaves of Baeckea frutescens L. were shade dried, powdered, and extracted using solvent ethanol. Preliminary phytochemical screening of the crude extracts revealed the presence of alkaloids, flavonoids, steroids, terpenoids, phenols, and carbohydrates. The presence of these bioactive constituents is related to the antibacterial activity of the plant. Disc diffusion method revealed a high degree of activity against microorganisms. The results confirm that Baeckea frutescens L. can be used as a source of drugs to fight infections caused by susceptible bacteria.
  2. Ibrahim AA, Khaledi H, Hassandarvish P, Mohd Ali H, Karimian H
    Dalton Trans, 2014 Mar 14;43(10):3850-60.
    PMID: 24442181 DOI: 10.1039/c3dt53032a
    A new thiosemicarbazone (LH2) derived from indole-7-carbaldehyde was synthesized and reacted with Zn(II), Cd(II), Pd(II) and Pt(II) salts. The reactions with zinc and cadmium salts in 2 : 1 (ligand-metal) molar ratio afforded complexes of the type MX2(LH2)2, (X = Cl, Br or OAc), in which the thiosemicarbazone acts as a neutral S-monodentate ligand. In the presence of potassium hydroxide, the reaction of LH2 with ZnBr2 resulted in deprotonation of the thiosemicarbazone at the hydrazine and indole nitrogens to form Zn(L)(CH3OH). The reaction of LH2 with K2PdCl4 in the presence of triethylamine, afforded Pd(L)(LH2) which contains two thiosemicarbazone ligands: one being dianionic N,N,S-tridentate while the other one is neutral S-monodentate. When PdCl2(PPh3)2 was used as the Pd(II) ion source, Pd(L)(PPh3) was obtained. In a similar manner, the analogous platinum complex, Pt(L)(PPh3), was synthesized. The thiosemicarbazone in the latter two complexes behaves in a dianionic N,N,S-tridentate fashion. The platinum complex was found to have significant cytotoxicity toward four cancer cells lines, namely MDA-MB-231, MCF-7, HT-29, and HCT-116 but not toward the normal liver WRL-68 cell line. The apoptosis-inducing properties of the Pt complex was explored through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.
  3. Gopalan T, Muhamad MR, Wai Hoe VC, Hassandarvish P
    PLoS One, 2024;19(2):e0296871.
    PMID: 38319932 DOI: 10.1371/journal.pone.0296871
    The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs.
  4. Kadir FA, Othman F, Abdulla MA, Hussan F, Hassandarvish P
    Indian J Pharmacol, 2011 Feb;43(1):64-8.
    PMID: 21455425 DOI: 10.4103/0253-7613.75673
    This study was conducted to determine the effect of ethanolic extract of the dried stems of Tinospora crispa in a male rat model of hepatic fibrosis caused by the hepatotoxin, thioacetamide.
  5. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E
    Arch Oral Biol, 2014 Sep;59(9):987-99.
    PMID: 24952163 DOI: 10.1016/j.archoralbio.2014.06.001
    This study has attempted to evaluate the effects of ellagic acid (EA) on alveolar bone healing after tooth extraction in rats.
  6. Rahim NA, Hassandarvish P, Golbabapour S, Ismail S, Tayyab S, Abdulla MA
    Biomed Res Int, 2014;2014:416409.
    PMID: 24783203 DOI: 10.1155/2014/416409
    Herbal medicines appeared promising in prevention of many diseases. This study was conducted to investigate the gastroprotective effect of Curcuma xanthorrhiza leaf in the rats induced gastric ulcer by ethanol. Normal and ulcer control received carboxymethycellulose (5 mL/kg) orally, positive control was administered with 20 mg/kg omeprazole (reference drug) and 2 groups were received 250 mg/kg and 500 mg/kg of the leaf extract, respectively. To induce of gastric ulcers formation, ethanol (5 mL/kg) was given orally to all groups except normal control. Gross ulcer areas, histology, and amount of prostaglandin E2, superoxide dismutase and malondialdehyde were assessed to determine the potentiality of extract in prevention against gastric ulcers. Oral administration of extract showed significant gastric protection effect as the ulcer areas was remarkably decreased. Histology observation showed less edema and leucocytes infiltration as compared with the ulcer control which exhibited severe gastric mucosa injury. Furthermore, the leaf extract elevated the mucus weight, level of prostaglandin E2 and superoxide dismutase. The extract also reduced malondialdehyde amount significantly. Results showed leaf extract of Curcuma xanthorrhiza can enhanced the gastric protection and sustained the integrity of gastric mucosa structure. Acute toxicity test did not showed any sign of toxicity (2 g/kg and 5 g/kg).
  7. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
  8. Golbabapour S, Hajrezaie M, Hassandarvish P, Abdul Majid N, Hadi AH, Nordin N, et al.
    Biomed Res Int, 2013;2013:974185.
    PMID: 23781513 DOI: 10.1155/2013/974185
    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions.
  9. Khaledi H, Alhadi AA, Yehye WA, Ali HM, Abdulla MA, Hassandarvish P
    Arch Pharm (Weinheim), 2011 Nov;344(11):703-9.
    PMID: 21953995 DOI: 10.1002/ardp.201000223
    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.
  10. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

  11. Golbabapour S, Hajrezaie M, Hassandarvish P, Abdul Majid N, Hadi AHA, Nordin N, et al.
    Biomed Res Int, 2018;2018:1509057.
    PMID: 30515386 DOI: 10.1155/2018/1509057
    [This corrects the article DOI: 10.1155/2013/974185.].
  12. Chin KL, Zainal N, Sam SS, Hassandarvish P, Lani R, AbuBakar S
    Sci Rep, 2022 01 20;12(1):1054.
    PMID: 35058496 DOI: 10.1038/s41598-022-04955-z
    Neonatal microcephaly and adult Guillain-Barré syndrome are severe complications of Zika virus (ZIKV) infection. The robustly induced inflammatory cytokine expressions in ZIKV-infected patients may constitute a hallmark for severe disease. In the present study, the potential role of high mobility group box 1 protein (HMGB1) in ZIKV infection was investigated. HMGB1 protein expression was determined by the enzyme-linked immunosorbent assay (ELISA) and immunoblot assay. HMGB1's role in ZIKV infection was also explored using treatment with dexamethasone, an immunomodulatory drug, and HMGB1-knockdown (shHMGB1) Huh7 cells. Results showed that the Huh7 cells were highly susceptible to ZIKV infection. The infection was found to induce HMGB1 nuclear-to-cytoplasmic translocation, resulting in a > 99% increase in the cytosolic HMGB1 expression at 72-h post-infection (h.p.i). The extracellular HMGB1 level was elevated in a time- and multiplicity of infection (MOI)-dependent manner. Treatment of the ZIKV-infected cells with dexamethasone (150 µM) reduced HMGB1 extracellular release in a dose-dependent manner, with a maximum reduction of 71 ± 5.84% (P P 
  13. Hassandarvish P, Tiong V, Sazaly AB, Mohamed NA, Arumugam H, Ananthanarayanan A, et al.
    Br Dent J, 2020 06;228(12):900.
    PMID: 32591671 DOI: 10.1038/s41415-020-1794-1
  14. Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B
    Sci Rep, 2021 10 27;11(1):21221.
    PMID: 34707245 DOI: 10.1038/s41598-021-98949-y
    Dengue is an arthropod-borne viral disease that has become endemic and a global threat in many countries with no effective antiviral drug available currently. This study showed that flavonoids: silymarin and baicalein could inhibit the dengue virus in vitro and were well tolerated in Vero cells with a half-maximum cytotoxic concentration (CC50) of 749.70 µg/mL and 271.03 µg/mL, respectively. Silymarin and baicalein exerted virucidal effects against DENV-3, with a selective index (SI) of 10.87 and 21.34, respectively. Baicalein showed a better inhibition of intracellular DENV-3 progeny with a SI of 7.82 compared to silymarin. Baicalein effectively blocked DENV-3 attachment (95.59%) to the Vero cells, while silymarin prevented the viral entry (72.46%) into the cells, thus reducing viral infectivity. Both flavonoids showed promising antiviral activity against all four dengue serotypes. The in silico molecular docking showed that silymarin could bind to the viral envelope (E) protein with a binding affinity of - 8.5 kcal/mol and form hydrogen bonds with the amino acids GLN120, TRP229, ASN89, and THR223 of the E protein. Overall, this study showed that silymarin and baicalein exhibited potential anti-DENV activity and could serve as promising antiviral agents for further development against dengue infection.
  15. Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW
    Carbohydr Polym, 2022 Aug 15;290:119500.
    PMID: 35550778 DOI: 10.1016/j.carbpol.2022.119500
    The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
  16. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P
    Int J Mol Sci, 2023 May 31;24(11).
    PMID: 37298539 DOI: 10.3390/ijms24119589
    Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
  17. Tan KS, Azman AS, Hassandarvish P, Amelia-Yap ZH, Tan TK, Low VL
    Int J Mol Sci, 2023 Aug 03;24(15).
    PMID: 37569772 DOI: 10.3390/ijms241512398
    The insecticidal activity of Streptomyces sp. KSF103 ethyl acetate (EA) extract against mosquitoes is known; however, the underlying mechanism behind this activity remains elusive. In this study, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was employed to investigate changes in the protein profile of Aedes aegypti larvae and adults treated with lethal concentrations of 50 (LC50) EA extract. By comparing the treated and untreated mosquitoes, this study aimed to identify proteins or pathways that exhibit alterations, potentially serving as targets for future insecticide development. Treatment with a lethal concentration of EA extract upregulated 15 proteins in larvae, while in adults, 16 proteins were upregulated, and two proteins were downregulated. These proteins were associated with metabolism, protein regulation/degradation, energy production, cellular organization and structure, enzyme activity, and catalysis, as well as calcium ion transport and homeostasis. Notably, ATP synthase, fructose-bisphosphate aldolase (FBA), and ATP citrate synthase were significantly expressed in both groups. Gene ontology analysis indicated a focus on energy metabolic processes. Molecular docking revealed a strong interaction between dodemorph, selagine (compounds from the EA extract), and FBA, suggesting FBA as a potential protein target for insecticide development. Further studies such as Western blot and transcriptomic analyses are warranted to validate the findings.
  18. Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2306675.
    PMID: 38263674 DOI: 10.1080/21645515.2024.2306675
    Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
  19. Munawar WASWA, Elias MH, Addnan FH, Hassandarvish P, AbuBakar S, Roslan N
    BMC Infect Dis, 2024 Jan 23;24(1):124.
    PMID: 38263024 DOI: 10.1186/s12879-024-08983-0
    BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic occurred due to the dispersion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Severe symptoms can be observed in COVID-19 patients with lipid-related comorbidities such as obesity and diabetes. Yet, the extensive molecular mechanisms of how SARS-CoV-2 causes dysregulation of lipid metabolism remain unknown.

    METHODS: Here, an advanced search of articles was conducted using PubMed, Scopus, EBSCOhost, and Web of Science databases using terms from Medical Subject Heading (MeSH) like SARS-CoV-2, lipid metabolism and transcriptomic as the keywords. From 428 retrieved studies, only clinical studies using next-generation sequencing as a gene expression method in COVID-19 patients were accepted. Study design, study population, sample type, the method for gene expression and differentially expressed genes (DEGs) were extracted from the five included studies. The DEGs obtained from the studies were pooled and analyzed using the bioinformatics software package, DAVID, to determine the enriched pathways. The DEGs involved in lipid metabolic pathways were selected and further analyzed using STRING and Cytoscape through visualization by protein-protein interaction (PPI) network complex.

    RESULTS: The analysis identified nine remarkable clusters from the PPI complex, where cluster 1 showed the highest molecular interaction score. Three potential candidate genes (PPARG, IFITM3 and APOBEC3G) were pointed out from the integrated bioinformatics analysis in this systematic review and were chosen due to their significant role in regulating lipid metabolism. These candidate genes were significantly involved in enriched lipid metabolic pathways, mainly in regulating lipid homeostasis affecting the pathogenicity of SARS-CoV-2, specifically in mechanisms of viral entry and viral replication in COVID-19 patients.

    CONCLUSIONS: Taken together, our findings in this systematic review highlight the affected lipid-metabolic pathways along with the affected genes upon SARS-CoV-2 invasion, which could be a potential target for new therapeutic strategies study in the future.

  20. Hassandarvish P, Tiong V, Mohamed NA, Arumugam H, Ananthanarayanan A, Qasuri M, et al.
    Br Dent J, 2020 Dec 10.
    PMID: 33303923 DOI: 10.1038/s41415-020-2402-0
    Introduction Virus particles in respiratory droplets and aerosols generated during medical/dental procedures are a potential source of SARS-CoV-2 cross infection. In the dental setting, oral decontamination could be an important adjunct to personal protective equipment and is recommended by a number of national COVID-19 guidance documents for dental settings.Aim To assess the in vitrovirucidal activity of an oral povidone iodine (PVP-I) product against SARS-CoV-2.Material and methods BETADINE gargle and mouthwash (1% PVP-I) was tested against SARS-CoV-2 virus under both clean and dirty conditions using a suspension assay based on EN14476 methodology. Virucidal activity of the product, undiluted and at 1:2 dilution, was tested at contact times of 15, 30 and 60 seconds. Viral titres were calculated using the Spearman-Kärber method and reported as median tissue culture infectious dose (TCID50/ml).Results The undiluted product achieved >5 log10 reduction in viral titres compared to the control at 15, 30 and 60 seconds under both clean and dirty conditions. At a twofold dilution (0.5% PVP-I), the test product demonstrated >4 log10 kill at 15 seconds and >5 log10 kill at 30 and 60 seconds in both clean and dirty conditions.Conclusion PVP-I gargle and mouthwash product, undiluted and at 1:2 dilution, demonstrated potent and rapid virucidal activity (≥4 log10 reduction of viral titre) in 15 seconds against SARS-CoV-2 in vitro. The PVP-I gargle and mouthwash product is widely available and could be readily integrated into infection control measures during dental treatment including pre-procedural oral decontamination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links