Displaying all 9 publications

Abstract:
Sort:
  1. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, et al.
    Sci Rep, 2016 12 20;6:38692.
    PMID: 27995961 DOI: 10.1038/srep38692
    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.
  2. Osman H, Idris NH, Kamarulzaman EE, Wahab HA, Hassan MZ
    Acta Pharm Sin B, 2017 Jul;7(4):479-484.
    PMID: 28752033 DOI: 10.1016/j.apsb.2017.04.009
    Dengue is a severe mosquito-borne viral infection causing half a million deaths annually. Dengue virus NS2B/NS3 protease is a validated target for anti-dengue drug design. A series of hitherto unreported 3,5-bis(arylidene)-4-piperidones analogues 4a-4j were synthesized and screened in silico against DENV2 NS2B/NS3 protease to elucidate their binding mechanism and orientation around the active sites. Results were validated through an in vitro DENV2 NS2B/NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Nitro derivatives of 3,5-bis(arylidene)-4-piperidones (4e and 4j) emerged as promising lead molecules for novel protease inhibitors with an IC50 of 15.22 and 16.23 µmol/L, respectively, compared to the standard, panduratin A, having IC50 of 57.28 µmol/L.
  3. Kamarulzaman EE, Gazzali AM, Acherar S, Frochot C, Barberi-Heyob M, Boura C, et al.
    Int J Mol Sci, 2015 Oct 12;16(10):24059-80.
    PMID: 26473840 DOI: 10.3390/ijms161024059
    Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.
  4. Kamarulzaman EE, Vanderesse R, Gazzali AM, Barberi-Heyob M, Boura C, Frochot C, et al.
    J Biomol Struct Dyn, 2017 Jan;35(1):26-45.
    PMID: 26766582 DOI: 10.1080/07391102.2015.1131196
    Vascular endothelial growth factor (VEGF) and its co-receptor neuropilin-1 (NRP-1) are important targets of many pro-angiogenic factors. In this study, nine peptides were synthesized and evaluated for their molecular interaction with NRP-1 and compared to our previous peptide ATWLPPR. Docking study showed that the investigated peptides shared the same binding region as shown by tuftsin known to bind selectively to NRP-1. Four pentapeptides (DKPPR, DKPRR, TKPPR and TKPRR) and a hexapeptide CDKPRR demonstrated good inhibitory activity against NRP-1. In contrast, peptides having arginine residue at sites other than the C-terminus exhibited low activity towards NRP-1 and this is confirmed by their inability to displace the VEGF165 binding to NRP-1. Docking study also revealed that replacement of carboxyl to amide group at the C-terminal arginine of the peptide did not affect significantly the binding interaction to NRP-1. However, the molecular affinity study showed that these peptides have marked reduction in the activity against NRP-1. Pentapeptides having C-terminal arginine showed strong interaction and good inhibitory activity with NRP thus may be a good template for anti-angiogenic targeting agent.
  5. Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, et al.
    Molecules, 2021 Aug 31;26(17).
    PMID: 34500740 DOI: 10.3390/molecules26175304
    Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
  6. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
  7. Salin NH, Noordin R, Al-Najjar BO, Kamarulzaman EE, Yunus MH, Karim IZA, et al.
    PLoS One, 2020;15(5):e0225232.
    PMID: 32442170 DOI: 10.1371/journal.pone.0225232
    Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.
  8. Salin NH, Hariono M, Khalili NSD, Zakaria II, Saqallah FG, Mohamad Taib MNA, et al.
    Front Mol Biosci, 2022;9:875424.
    PMID: 36465554 DOI: 10.3389/fmolb.2022.875424
    According to the World Health Organisation (WHO), as of week 23 of 2022, there were more than 1,311 cases of dengue in Malaysia, with 13 deaths reported. Furthermore, there was an increase of 65.7% during the same period in 2021. Despite the increase in cumulative dengue incidence, there is no effective antiviral drug available for dengue treatment. This work aimed to evaluate several nitro-benzylidene phenazine compounds, especially those that contain 4-hydroxy-3,5-bis((2-(4-nitrophenyl)hydrazinylidene)-methyl)benzoate through pharmacophore queries selection method as potential dengue virus 2 (DENV2) NS2B-NS3 protease inhibitors. Herein, molecular docking was employed to correlate the energies of selected hits' free binding and their binding affinities. Pan assay interference compounds (PAINS) filter was also adopted to identify and assess the drug-likeness, toxicity, mutagenicity potentials, and pharmacokinetic profiles to select hit compounds that can be considered as lead DENV2 NS2B-NS3 protease inhibitors. Molecular dynamics assessment of two nitro-benzylidene phenazine derivatives bearing dinitro and hydroxy groups at the benzylidene ring showed their stability at the main binding pocket of DENV2 protease, where their MM-PBSA binding energies were between -22.53 and -17.01 kcal/mol. This work reports those two nitro-benzylidene phenazine derivatives as hits with 52-55% efficiency as antiviral candidates. Therefore, further optimisation is required to minimise the lead compounds' toxicity and mutagenicity.
  9. Khalili NSD, Khawory MH, Salin NH, Zakaria II, Hariono M, Mikhaylov AA, et al.
    Heliyon, 2024 Jan 30;10(2):e24202.
    PMID: 38293469 DOI: 10.1016/j.heliyon.2024.e24202
    A series of new imidazole-phenazine derivatives were synthesized via a two-step process. The condensation of 2,3-diaminophenazine and benzaldehyde derivatives proceeds with intermediate formation of an aniline Schiff base, which undergoes subsequent cyclodehydrogenation in situ. The structures of the synthesized compounds were characterized by 1D and 2D NMR, FTIR and HRMS. A total of thirteen imidazole phenazine derivatives were synthesized and validated for their inhibitory activity as anti-dengue agents by an in vitro DENV2 NS2B-NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Two para-substituted imidazole phenazines, 3e and 3k, were found to be promising lead molecules for novel NS2B-NS3 protease inhibitors with IC50 of 54.8 μM and 71.9 μM, respectively, compared to quercetin as a control (IC50 104.8 μM). The in silico study was performed using AutoDock Vina to identify the binding energy and conformation of 3e and 3k with the active site of the DENV2 NS2B-NS3 protease Wichapong model. The results indicate better binding properties of 3e and 3k with calculated binding energies of -8.5 and -8.4 kcal mol-1, respectively, compared to the binding energy of quercetin of -7.2 kcal mol-1, which corroborates well with the experimental observations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links