METHODS: Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss.
RESULTS: We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.
OBJECTIVE: This study aimed to investigate the association between human mobility and COVID-19 infections across space and time during the transition period of shifting strategies from restrictions to normal living in Southeast Asia. Our research results have significant implications for evidence-based policymaking at the present of the COVID-19 pandemic and other public health issues.
METHODS: We aggregated weekly average human mobility data derived from the Facebook origin and destination Movement dataset. and weekly average new cases of COVID-19 at the district level from 01-Jun-2021 to 26-Dec-2021 (a total of 30 weeks). We mapped the spatiotemporal dynamics of human mobility and COVID-19 cases across countries in SEA. We further adopted the Geographically and Temporally Weighted Regression model to identify the spatiotemporal variations of the association between human mobility and COVID-19 infections over 30 weeks. Our model also controls for socioeconomic status, vaccination, and stringency of intervention to better identify the impact of human mobility on COVID-19 spread.
RESULTS: The percentage of districts that presented a statistically significant association between human mobility and COVID-19 infections generally decreased from 96.15% in week 1 to 90.38% in week 30, indicating a gradual disconnection between human mobility and COVID-19 spread. Over the study period, the average coefficients in 7 SEA countries increased, decreased, and finally kept stable. The association between human mobility and COVID-19 spread also presents spatial heterogeneity where higher coefficients were mainly concentrated in districts of Indonesia from week 1 to week 10 (ranging from 0.336 to 0.826), while lower coefficients were mainly located in districts of Vietnam (ranging from 0.044 to 0.130). From week 10 to week 25, higher coefficients were mainly observed in Singapore, Malaysia, Brunei, north Indonesia, and several districts of the Philippines. Despite the association showing a general weakening trend over time, significant positive coefficients were observed in Singapore, Malaysia, western Indonesia, and the Philippines, with the relatively highest coefficients observed in the Philippines in week 30 (ranging from 0.101 to 0.139).
CONCLUSIONS: The loosening interventions in response to COVID-19 in SEA countries during the second half of 2021 led to diverse changes in human mobility over time, which may result in the COVID-19 infection dynamics. This study investigated the association between mobility and infections at the regional level during the special transitional period. Our study has important implications for public policy interventions, especially at the later stage of a public health crisis.
EVIDENCE ACQUISITION: This study was based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) statement guidelines for a systematic review of the academic databases Scopus, Web of Science, PubMed, EBSCOhost (SportDiscus), and Google Scholar. The PEDro scale was used to assess the methodological quality of the included publications, which ranged from moderate to high quality. The systematic review protocol was registered on inplasy.com (INPLASY202380049).
EVIDENCE SYNTHESIS: Out of 249 studies identified, 93 articles were evaluated as eligible, and after the screening, 18 studies were finally included in this systematic review. Meta-analysis results showed a significant enhancement on vertical jump height in the BFRT group compared to the control group (SMD=1.39, 95% CI=0.30-2.49, P=0.01). BFRT was able to significantly increase maximal oxygen uptake (SMD=1.65, 95% CI=0.56-2.74, P<0.01). While no significant improvement in sprint time was observed (SMD= -0.18, 95% CI=-1.18-0.82, P=0.115).
CONCLUSIONS: The finding suggests that BFRT is beneficial to athletes as this training method can be effective in enhancing physical and technical performance in athletes. Nevertheless, further analysis needs to be conducted to fully determine the effectiveness of the moderators of the intervention on sports performance.
FINDINGS: In this study, we collected and tested 253 rectal swabs from pet dogs; of which 64 samples (25.3%) tested positive for AstVs with diarrhea and 15 more samples (5.9%) also was identified as AstVs, however without any clinical signs. Phylogenetic analysis of 39 partial ORF1b sequences from these samples revealed that they are similar to AstVs, which can be subdivided into three lineages. Interestingly, out of the 39 isolates sequenced, 16 isolates are shown to be in the Mamastrovirus 5/canine astrovirus (CAstV) lineage and the remaining 23 isolates displayed higher similarities with known porcine astrovirus (PoAstV) 5 and 2. Further, analysis of 13 capsid sequences from these isolates showed that they are closely clustered with Chinese or Italy CAstV isolates.
CONCLUSIONS: The findings indicate that CAstVs commonly circulate in pet dogs, and our sequencing results have shown the genomic diversity of CAstVs leading to increasing number of clusters.
CASE PRESENTATION: A 65-year-old male recovering from a left massive intracerebral hemorrhage after open debridement hematoma removal had impaired right limb movement, right hemianesthesia, motor aphasia, dysphagia, and complete dependence on his daily living ability. After receiving 3 months of conventional rehabilitation therapy, his cognitive, speech, and swallowing significantly improved but the Brunnstrom Motor Staging (BMS) of his right upper limb and hand was at stage I-I. UG-MNES was applied on the right upper limb for four sessions, once per week, together with conventional rehabilitation. Immediate improvement in the upper limb function was observed after the first treatment. To determine the effect of UG-MNES on long-term functional recovery, assessments were conducted a week after the second and fourth intervention sessions, and motor function recovery was observed after 4-week of rehabilitation. After completing the full rehabilitation course, his BMS was at stage V-IV, the completion time of Jebsen Hand Function Test (JHFT) was shortened, and the scores of Fugl-Meyer Assessment for upper extremity (FMA-UE) and Modified Barthel Index (MBI) were increased. Overall, the motor function of the hemiplegic upper limb had significantly improved, and the right hand was the utility hand. Electromyography (EMG) and nerve conduction velocity (NCV) tests were normal before and after treatment.
CONCLUSION: The minimally invasive, UG-MNES could be a new alternative treatment in stroke rehabilitation for functional recovery of the upper limbs.